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1. The Carding Machine
• The process of recycling carbon fibre involves

recovering waste carbon fibre and turning it
into non-woven materials that can be used in
industry.

• Carding machines consist of a number of
rollers rotating at different velocities and in
different directions.

• An unordered web of carbon fibres is fed into
the machine, see figure 2.

• The fibres are then aligned as they move
through the carding machine, forming a
homogeneous, oriented web, see figure 3.

• The three main rollers we focus on are the
swift (or main cylinder), the worker, and the
stripper.

• Figure 1 shows the typical path of a fibre
(order shown by numbers (1)-(7)) through this
part of the carding machine.
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Figure 1 – Typical route of a fibre (shown in
blue) through the carding machine.

Figure 2 – A photo of a web of carbon
fibres before carding.

Figure 3 – A photo of a nonwoven of carbon fibres
after carding and needle punching.

2. Challenge & Aims
Challenges:

• Produce a continuum model for the flow of material through the carding machine.
• Predicting how the control parameters affect the carding process.

Aims:
• A validated model for the whole carding machine.
• A mathematical tool for optimising the quality of the product.

3. The Model
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Figure 4 – Schematic of the region between the worker,
moving at velocity u2, and the main cylinder, moving at
velocity u1. The hooks along the surface of the cylinders,
and their relative orientation, are also shown.

• Adapt an existing model from the textile
industry [1].

• Focus on the region between the worker
and main cylinder, see figure 4.

• Define an order parameter that is equal to
1 when fibres are fully ordered, and 0 when
they are randomly aligned.

• Model the order of the material increasing
due to it being stretched.

• This region is very thin so we can make
a lubrication-type approximation in 2D.
Also approximate the surface of the larger
cylinder as flat.

• Assume that the fibres are naturally straight and can therefore not entangle with each other, a
significant difference to fibres in the textile industry.

• We derive an anisotropic, continuum model.
• The model is viscous, so we have the rate-of-strain tensor, eij , and no elasticity. It is similar

to some anisotropic fluid and liquid crystal models, with the important differences of being
compressible and there being no pressure.

• Important dependent variables are density of fibres, ρ, director, a = (cos θ, sin θ), where θ is the
mean angle the fibres make with the horizontal, the order parameter, φ, and the velocity, (u, v).

• The model consists of equations for conservation of mass, conservation of momentum, a kinematic
condition, and a constitutive law for the order parameter.

4. Governing Equations
Conservation of Mass

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) = 0,

Conservation of Momentum
Fi + ∂σik

∂xk
= 0,

Constitutive relation for the stress
including isotropic response, σI , and non-
isotropic response, σN . Assume stress
tensor linearly proportional to the rate-
of-strain and the number of fibre contact
points (the square of the density).

σαβ = (1 − φ)σIαβ + φσNαβ ,

σIαβ = ρ2 (µ1eαβ + µ2ekkδαβ) ,

σNαβ = ρ2
(
λ1eαβ + λ2ekkδαβ + λ3(aαaieβi + aβaieiα)

+ λ4(aαaβekk + δαβakalekl) + λ5aαaβakaiekl

)
,

Kinematic condition for director a
convected by velocity u. ∂ai

∂t
+ uk

∂ai
∂xk

+ akal
∂uk
∂xl

ai = ak
∂ui
∂xk

,

Constitutive law for order parameter -
Assume evolution of order is proportional
to the rate-of-extension but does not
decrease under compression.

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
=

[
β(1 − φ)akal

∂uk
∂xl

]+
.

5. Results
• Assuming a thin region between the cylinders leads to a lubrication-type approximation.
• To simplify, assume uniform viscosity and no time dependence. We can solve the momentum

equations for u and v and use these to calculate the other variables.
• Assumptions allow progress to be made analytically so we can view the evolution of the order and

density of fibres.
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Figure 5 – Distribution of
the density of fibres.
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Figure 6 – Distribution of
the order of fibres.
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Figure 7 – Plot of order
parameter at downstream
end point.

• Density increases as web is
compressed.

• Highest density near
worker.

• Decreases again as web
expands.

• The streamlines are shown
in black.

• Order parameter increases
across the region between
the worker and main
cylinder.

• Order only starts to change
when the web is being
stretched.

• Highest order occurs at
an interior point near the
worker.

• Order parameter at the
downstream end point
versus velocity ratio
between the cylinders, ū.

• A large difference in the
velocities of the cylinders is
desirable.

6. A Combing Model
• Previously we assumed that the order of the fibres increases due to the material being stretched,

and we used a continuum approach to modelling the web of fibres.
• In addition, there are hooks along the cylinders (as shown in figure 4), which increase the order

by combing the material.
• To understand the effects of combing, we consider a simple model problem in which a hook moves

through a web of three crossed fibres.
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Figure 8 – Schematic of a pin being
dragged downwards to comb three
overlapping fibres.

• We consider a hook of radius rp moving at
constant velocity, V , through 3 fibres.

• We assume that the top 2 fibres are fixed at
the end points (1) and (2), due to the presence
of other fibres in the surrounding material.

• The hook is dragged downwards with force F .
• The angle θ decreases as the fibres are combed

until the hook can pass through.
• The fibres are modelled as straight rods.
• We want to know the force, F , required

to comb at a constant velocity without the
tension in the fibres, T , becoming large
enough for the fibres to break.

• We use Coulomb friction to describe the
interaction between the hook and the fibres,
with coefficient of friction µ.

• We assume that the frictional force is a
function of the relative velocity of the fibres
at crossover points (a), (b), and (c).

Resulting Equations:

F =
AV cos2 θ sin θ

(
x+ l22

x sin2 θ
)

x
(
1 − rp

x cos θ
)2 (µ cos θ + sin θ) , T = (x sin θ + l2) AV cos θ sin θ

x
(
1 − rp

x cos θ
)
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Figure 9 – The force required to move the hook
through the fibres at a constant speed against time.
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Figure 10 – The tension, T , in the fibre as the hook
is moved through the fibres at a constant speed against
time.

7. Conclusions & Further Work
• We have derived a continuum model for fibres moving through a carding machine, in a lubrication-

type approximation.
• Our model shows the order of the fibres increasing in the region between the main cylinder and

the worker, agreeing with observations.
• A higher velocity difference results in more efficient carding.
• Started developing a microscale model to describe combing.
• We will incorporate the effect of the hooks in the macroscale by adding point forces to our

momentum equations.

Acknowledgements
References
[1] M. E. M. Lee and H. Ockendon. A continuum

model for entangled fibres. European Journal
of Applied Mathematics, 16(2):145–160, 2005.


