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QB = trade execution

Execute order as agent for client
Goal: best final average execution price
What is a good price?
Evaluate relative to benchmark

benchmark defines an "ideal" trade
different benchmarks give different strategies
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Slippage

Difference of final average execution price and benchmark
execution - benchmark for buys
benchmark - execution for sells

Positive slippage is bad, negative is good
For agency execution, minimize this
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Bolt:  arrival price
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Arrival price 
benchmark 
("strike")

Report execution price 
and slippage 

relative to benchmark

Also report other 
benchmarks for interest 

(but these are not 
targeted by this algo)



Strobe:  average price on interval
5

For Strobe, execution 
approximately follows 

volume curve, but 
also opportunistic 
when can improve 

performance



We focus on Bolt and arrival price

Arrival price is most fundamental
represents trade completed immediately at decision price

Arrival price is cleanest benchmark
reference point is in past, not affected by trading

Arrival price is most challenging to model
market direction is biggest contributor
lots of statistical noise
market impact and alpha are inextricable
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Example time-dependent model
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Available data is 
typical of institutional  

trade records
Equity Market Impact May 10, 2005 6

2.1 Description and filters

Each order is broken into one or more transactions, each of which may
generate one or more executions. For each order, we have the following
information:

• The stock symbol, requested order size (number of shares) and sign
(buy or sell) of the entire order. Client identification is removed.

• The times and methods by which transactions were submitted by
the Citigroup trader to the market. We take the time t0 of the first
transaction to be the start of the order. Some of these transactions
are sent as market orders, some are sent as limit orders, and some
are submitted to Citigroup’s automated VWAP server. Except for
the starting time t0, and except to exclude VWAP orders, we make
no use of this transaction information.

• The times, sizes, and prices of execution corresponding to each
transaction. Some transactions are cancelled or only partially exe-
cuted; we use only the completed price and size. We denote execu-
tion times by t1, . . . , tn, sizes by x1, . . . , xn, and prices by S1, . . . , Sn.

All orders are completed within one day (though not necessarily com-
pletely filled).

Figure 1 shows a typical example. A sell order for 2500 shares of DRI
was entered into the system at t0 =10:59 AM. The transactions submitted
by the trader generatedn = 5 executions, of which the last one completed
at tn =15:15. The dashed line in the figure shows the continuous-time
approximation that we use in the data fitting: execution follows the av-
erage day’s volume profile over the duration of the trade execution.

In addition, we have various additional pieces of information, such as
the instructions given by the client to the trader for the order, such as
“over the day”, “market on close”, ”market on open”, “VWAP”, or blank.

The total sample contains 682,562 orders, but for our data analysis
we use only a subset.

1. To exclude small and thinly traded stocks, we consider only orders
on stocks in in the Standard and Poor’s 500 index, which represent
about half of the total number of orders but a large majority of
the total dollar value. Even within this universe, we have enough
diversity to explore dependence on market capitalization, and we
have both NYSE and OTC stocks.
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Citigroup’s block desk for some or all of the transactions, and the
fills are reported some time after the order is completed. Therefore
we do not have reliable time information.

This exclusion, together with our use of filled size in place of originally
requested size, could be a source of significant bias. For example, if
clients and traders consistently used limit orders, orders might be filled
only if the price moved in a favorable direction. Analysis of our data set
suggests that this effect is not significant—for example, we obtain almost
exactly the same coefficients with or without partially filled orders—and
informal discussions with traders confirm the belief that partial fills are
not the result of limit order strategy.

Most significantly, we exclude small orders since our goal is to esti-
mate transaction costs in the range where they are significant. Specifi-
cally, we include only orders that

6. have at least two completed transactions,

7. are at least 1000 shares, and

8. are at least 0.25% of average daily volume in that stock.

The results of our model are reasonably stable under changes in these
criteria. After this filtering, we have 29,509 orders in our data set. The
largest number of executions for any order is n = 548; the median is
around 5. The median time is around one-half hour.

Table 2 shows some descriptive statistics of our sample. Most of our
orders constitute only a few percent of typical market volume, and our
model is designed to work within this range of values. Orders larger than
a few percent of daily volume have substantial sources of uncertainty that
are not modeled here, and we cannot claim that our model accurately
represents them.

In addition to this proprietary data set, we also use the publically
available Trade and Quote (TAQ) data from the New York Stock Exchange.

2.2 Variables

The goal of our study is to describe market impact in terms of a small
number of input variables. Here we define precisely what market impacts
we are measuring, and what primary and auxiliary variables we will use
to model them.
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The publically available datasets lack reliable classification of indi-
vidual trades as buyer- or seller-initiated. Even more significantly, each
transaction exists in isolation; there is no information on sequences of
trades that form part of a large transaction. Some academic studies have
used limited data sets made available by asset managers that do have
this information, where the date but not the time duration of the trade
is known (Chan and Lakonishok 1995; Holthausen, Leftwich, and Mayers
1990; Keim and Madhavan 1996).

Our goal is to use a large proprietary data set to measure the indirect
costs experienced by large institutional traders, and to characterize the
dependence of these costs on a few explanatory variables, so that these
costs may be estimated and controlled. An essential variable incorpo-
rated in our study is the rate of execution. We know of no other study
that has carried out this fit directly, although various models in use in the
industry (Alba 2002; de Ternay 2002; Weisberger and Kreichman 1999)
are based on similar regressions on smaller samples. We describe our
data set in Section 2.

The transaction cost model embedded in our analysis is based on the
model presented by Almgren and Chriss (2000) with nonlinear extensions
from Almgren (2003). The essential features of this model, as described
in Section 3 below, are that it explicitly divides market impact costs into
a permanent component associated with information, and a temporary
component arising from the liquidity demands made by execution in a
short time.

In Section 4 we carry out the regression to determine the model pa-
rameters. In doing this, we extend the model to include dependence
of the coefficients on econometric variables such as volatility, etc. This
cross-sectional analysis verifies the structure of the parameters chosen
in Section 3.

2 Data

The data set on which we base our analysis contains, before filtering, al-
most 700,000 US stock trade orders executed by Citigroup Equity Trading
desks for the 19-month period from December 2001 through June 2003.
(The model actually used within the BECS software is estimated on an
on-going basis, to reflect changes in the trading environment.) We now
briefly describe and characterize the raw data, and then the particular
quantities of interest that we extract from it.
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Subtlety: Impact vs alpha

You anticipate price increase

You enter a buy order  
to profit from increase

Price goes up

Impact or alpha?

No action in market is independent 
of what came before, nor  

of what is expected to come after.

Impossible to separate 
these two: take an 

empirical point of view 
and only summarize 

combined result



Goal of market impact modeling

Predict
Slippage for a particular contemplated order

buy 500 10-year Treasury over the next 2 hours
Dependence on variables that can be adjusted

what happens if we trade 200 or 1000, or take 3 hours?
Uses

Trade decision-making
how should we choose execution parameters?

Post-trade analysis
what products / brokers / traders were good or bad relative to model?
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Data resources

Large variety of orders executed in past
thousands per day
many different products and market conditions

'What happened the last time that we did 
something "like" this?'
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Classic problem in statistics / machine learning

One output variable:  slippage
Many input variables:

Order parameters:
symbol, side, size, start time, duration, etc

Market parameters known before trading:
forecast volume, volatility, spread, quote size
real-time volume, volatility, spread, quote size

Market parameters discovered during trading:
price direction (most important)
evolution of volume, volatility, etc

12
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Analytical techniques

Regression
specific function depending on parameters
easy interpretation, not always accurate

Supervised learning
many powerful modern techniques

neural nets, trees, support vector machines, etc
not always easy to interpret

13
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Challenge in market impact modeling

Very large noise relative to signal
Criterion of minimum discrepancy is hard to apply
Main criterion: residuals, etc, should not depend 
other variables

14



Strategy

1. Single asset fitting

2. Multi-asset fitting across all universe of futures products

15



Example:

ES (SP500 futures) trades from Sep 2018 through Dec 2019
all clients merged together (except private data)

Outright contracts only, mostly front month

Exclude orders with limit price 

Exclude clients who cancel more than 5% of orders

For "market impact", most important variable is size
hypothesis: large trades have higher slippage

16
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Weighted mean cost = 1.84

 Median size = 14
CME E-mini S&P 500 (ES) from 03 Sep 2018 to 31 Dec 2019

Normalized bin counts
Weighted mean cost = 1.84
Median size = 14
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Raw data
Slight "jitter" to show 

overlapping points

Majority of orders 
are small

But cost is experienced 
on these few large orders

Not at all obvious 
what kind of model 
would fit this data

Choice of size 
as unique

independent 
variable 

(for now)
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Weighted mean cost = 1.84

 Median size = 14
CME E-mini S&P 500 (ES) from 03 Sep 2018 to 31 Dec 2019

Bin means
Weighted mean cost = 1.84
Median size = 14
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Does cost increase with order size?
Yes, cost increases with size, 

but error bars are large 
where it is most interesting

One standard 
deviation
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 Median size = 14
CME E-mini S&P 500 (ES) from 03 Sep 2018 to 31 Dec 2019

Bin costs
Weighted mean cost = 1.84
Median size = 14
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Most cost from small 
to medium orders

Where does the cost come from?
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 Median size = 14
CME E-mini S&P 500 (ES) from 03 Sep 2018 to 31 Dec 2019

Kernel smoothers at 0.1,0.2,0.5 decades
Bin means
Weighted mean cost = 1.84
Median size = 14

20

Kernel estimator Roughly agrees 
with bin averages

Poor behavior 
with outliers
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Parametric model

֨ � PSEFS TJ[F֩ � TMJQQBHF

Coefficients a, b determined linearly for each exponent γ
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γ determined by one-dimensional minimization (easy!)

Two linear coefficients a,b
One exponent γ
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0.3% reduction 
from worst 

residual 
to best
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CME E-mini S&P 500 (ES) from 03 Sep 2018 to 31 Dec 2019

Confidence bands at 1,2 standard deviations
Weighted mean cost = 1.84
Median size = 14
Fit with exponent 0.194

50 1.21
100 1.57
200 1.97
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Fit curve:  exponent = 0.812

Error bars on fit values

Good fit for medium sizes

Poor fit for large sizes
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CME E-mini S&P 500 (ES) from 03 Sep 2018 to 31 Dec 2019

Confidence bands at 1,2 standard deviations
Weighted mean cost = 1.84
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Fit with exponent 0.5

50 1.02
100 1.37
200 1.87

24

What should the exponent be?
Strong reasons to prefer k = 0.5
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Residual as function of participation rate
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Bin counts
Bin means
Linear fit

Participation rate during execution interval

100%10%1%0.1%0.01%

Cost decreases 
as participation rate 

increases

Participation rate depends on 
how quickly the order fills.
 
Participation rate is a
dependent variable, not
independent.
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Dependence of exponent on time Fit values on
• 16 months
• 8 months
• 4 months
• 2 months
• 1 monthExponent fit is very unstable 

0.5 most of the time
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Dependence of coefficient on time

Reasonably stable 
with fixed exponent 0.5 Anomalous period 

Q3 2019



Conclusions of single-asset fitting

Fractional-power model gives reasonable agreement
Settle on exponent k = 0.5

Want to fit important part of parameter range (50-100)
Neglect participation rate

28



Multi-asset fitting

Challenge:  wide range of products
Not enough data for each one to fit individually
How to group together?

29
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Futures contract number

Number of 
distinct orders

Good statistics 
up here

Not enough data 
down here--

need to combine 
with other products
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Comparison of coefficients:
normalize by volume and volatilityպߑ � ֗ऒ֏֍ओ � FSSPS

պ � TMJQQBHF֏ � USBEF TJ[Fߑ � GPSFDBTU EBJMZ WPMBUJMJUZ֍ � GPSFDBTU EBJMZ WPMVNF
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Consistent with literature

Anomalous Price Impact and the Critical Nature of Liquidity in Financial Markets

B. Tóth, Y. Lempérière, C. Deremble, J. de Lataillade, J. Kockelkoren, and J.-P. Bouchaud
Capital Fund Management, 6, blvd Haussmann 75009 Paris, France

(Received 9 May 2011; published 31 October 2011)

We propose a dynamical theory of market liquidity that predicts that the average supply/demand profile

is V shaped and vanishes around the current price. This result is generic, and only relies on mild

assumptions about the order flow and on the fact that prices are, to a first approximation, diffusive. This

naturally accounts for two striking stylized facts: First, large metaorders have to be fragmented in order to

be digested by the liquidity funnel, which leads to a long memory in the sign of the order flow. Second, the

anomalously small local liquidity induces a breakdown of the linear response and a diverging impact of

small orders, explaining the ‘‘square-root’’ impact law, for which we provide additional empirical support.

Finally, we test our arguments quantitatively using a numerical model of order flow based on the same

minimal ingredients.

DOI: 10.1103/PhysRevX.1.021006 Subject Areas: Complex Systems, Interdisciplinary Physics, Statistical Physics

I. INTRODUCTION

Price impact refers to the correlation between an incom-
ing order (to buy or to sell) and the subsequent price
change [1–3]. That a buy (sell) trade should push the price
up (down) is intuitively obvious and is easily demonstrated
empirically (see [3] for a recent review). Such a mecha-
nism must, in fact, be present for private information to be
incorporated into market prices. But it is also a sore reality
for large trading firms for which price impact induces extra
costs. Indeed, large volumes must typically be fragmented
and executed incrementally. However, since each ‘‘child
order’’ pushes the price up or down, the total cost of the
‘‘metaorder’’1 is quickly dominated, as sizes become large
by the average price impact. Monitoring and controlling
impact has therefore become one of the most active
domains of research in quantitative finance since the
mid-nineties. A huge amount of empirical results has
accumulated over the years, in particular, concerning the
relation between the total size Q of the metaorder and the
resulting average price change. These empirical results
come from either proprietary trading strategies (and are
often not published), or from brokerage firms, who execute
on behalf of clients [4–8], or else from the exchanges, who
give exceptional access to identification codes that allow
one to reconstruct the metaorders from some market par-
ticipants [9,10]. Remarkably, although these data sets are
extremely heterogeneous in terms of markets (equities,
futures, FX, etc.), epochs (from the mid-nineties, when
liquidity was provided by market makers, to the present

day’s electronic markets), market participants and under-
lying trading strategies (fundamental, technical, etc.), and
style of execution (using limit or market orders, with high
or low participation ratio, etc.), a very similar concave
impact law is reported in most studies. More precisely,
the average relative price change ! between the first and
the last trade of a metaorder of size Q is well described
by the so-called ‘‘square-root’’ law:

!ðQÞ ¼ Y!

ffiffiffiffi
Q

V

s
; (1)

where! is the daily volatility of the asset and V is the daily
traded volume, and both quantities are measured contem-
poraneously to the trade. The numerical constant Y is of
order unity. Published and unpublished data suggest
slightly different versions of this law; in particular, theffiffiffiffi
Q

p
dependence is more generally described as a power-

law relation !ðQÞ / Q", with " in the range 0.4 to 0.7
[4–9]. For example, using a large data sample of 700 000
U.S. stock trade orders executed by Citigroup Equity
Trading, Almgren et al. [4] extract " $ 0:6. Moro et al.
[9] report " $ 0:5 for trades on the Madrid stock exchange
and " $ 0:7 for the London stock exchange. We show in
Fig. 1 our own proprietary data corresponding to nearly
500 000 trades on a variety of futures contracts, which
yield " $ 0:5 for small tick contracts and " $ 0:6 for large
tick contracts, for Q=V ranging from a few 10%4 to a few
percent. Our data on stocks is also compatible with " $
0:5, although noisier. We note that all these studies differ
quite significantly in the details of (a) how the price impact
! is defined and measured, (b) how different assets and
periods are collated together in the analysis, and (c) how
the fit is performed: over what range of Q=V, adding an
intercept or not, etc. But in spite of all these differences and
those mentioned above—in particular concerning the strat-
egies motivating the trades—it is quite remarkable that the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

1We call the metaorder (or parent order) the bundle of orders
corresponding to a single trading decision. A metaorder is
typically traded incrementally through several child orders.
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periods are collated together in the analysis, and (c) how
the fit is performed: over what range of Q=V, adding an
intercept or not, etc. But in spite of all these differences and
those mentioned above—in particular concerning the strat-
egies motivating the trades—it is quite remarkable that the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

1We call the metaorder (or parent order) the bundle of orders
corresponding to a single trading decision. A metaorder is
typically traded incrementally through several child orders.
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square-root impact law appears to hold approximately in
all cases.

The aim of the present paper is to provide a theoretical
underpinning for such a universal impact law. We first give
a general dynamical theory of market liquidity that predicts
that the average supply/demand profile is V shaped around
the current price. The anomalously small local liquidity
induces a breakdown of the linear response and explains
the square-root impact law. We then study numerically a
stylized model of order flow based on minimal ingredients.
The numerical results fully support our analytical argu-
ments and allow us to get quantitative insights into various
aspects of the problem.

II. AN INTRIGUING IMPACT LAW

One should first carefully distinguish the total impact of
a given metaorder of sizeQ from other measures of impact
that have been reported in the literature. One is the imme-
diate impact of an individual market order of size q, which
has been studied by various authors and is also strongly
concave as a function of q, i.e., q! with ! ! 0:2, or even
lnq [3]. Another easily accessible measure of impact is to
relate the average price change !T in a given time interval
T to the total market order imbalanceQT in the same time

period, i.e., the sum of the signed volumes of all market
orders. This quantity is estimated using all the trades in the
market (i.e., those coming from different market partici-
pants) and is clearly different from the impact of a given
metaorder (see below). However, there seems to be quite a
bit of confusion in the literature and many authors unduly
identify the two quantities. If T is very short, such that
there are only one or a few trades, one essentially observes
the concave impact of individual orders that we just men-
tioned. But as T increases, and as such, the number of
trades becomes large, the relation between !T and QT

becomes more and more linear for small imbalances (see,
e.g., [3], Fig. 2.5), and on time scales comparable to those
needed to complete a metaorder, the concavity has almost
disappeared, except in rare cases when QT=V is large—in
any case, much larger than the region where Eq. (1) holds.
A square-root singularity for small traded volumes is

highly nontrivial, and certainly not accounted for in Kyle’s
classical model of impact [11], which predicts a linear
impact ! / Q. A concave impact function is often thought
of as a saturation of impact for large volumes. We believe
that the emphasis should rather be placed on the anomalous
high impact of small trades. Numerically, Eq. (1) means
that trading 100th of the daily volume moves the price by a
tenth of its daily volatility, which is indeed a huge ampli-
fication. Mathematically, Eq. (1) implies that the marginal

impact diverges for small volumes as Q"1=2, which means
that the susceptibility of the market to trades of vanishing
size is formally infinite. In most systems, the response to a
small perturbation is linear, i.e., small disturbances lead to
small effects. The breakdown of the linear response often
implies that the system is at, or close to, a critical point,
where very special properties emerge, such as long-range
memory or scale-invariant avalanches, that accompany this
diverging susceptibility. Of course, the mathematical di-
vergence is cut off in practice—for one thing, the volume
Q of a metaorder cannot be smaller than a single lot.
Empirical data will never be in the asymptotic limit
Q=V ! 0, but this is irrelevant to our discussion. This is,
in fact, also the case for most physical systems for which
critical behavior is observed. The important point here is
that the proximity of a critical point can lead to strongly
nonlinear effects and extreme fragility. As we will argue in
detail below, and substantiate within a precise numerical
model, we believe that markets operate in a critical regime
where liquidity vanishes. This offers a framework to under-
stand many of the anomalies in the behavior of markets,
including the long-term memory in order flow and the
presence of frequent unexplained jumps in prices, that
are—or so we believe—a consequence of the chronic
lack of liquidity that leads to a micro crisis. The anomalous
high impact of small trades implied by the concave impact
law, Eq. (1), is, in our view, another side of the same coin.
Numerous interpretations have been put forth to explain

a concave impact law, and can be broadly classified into
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FIG. 1. The impact of metaorders for Capital Fund
Management proprietary trades on futures markets, in the period
from June 2007 to December 2010. Impact is measured here as
the average execution shortfall of a metaorder of size Q. The
data base contains nearly 500 000 trades. We show !=" vs Q=V
on a log-log scale, where " and V are the daily volatility and
daily volume measured the day the metaorder is executed. The
blue curve is for large tick sizes, and the red curve is for small
tick sizes. For large ticks, the curve can be well fit with # ¼ 0:6,
while for small ticks we find # ¼ 0:5. For comparison, we also
show the lines of slope 0.5 (corresponding to a square-root
impact) and 1 (corresponding to linear impact). We have re-
moved a small positive intercept !=" ¼ 0:0015 for Q ¼ 0,
which is probably due to a conditioning effect.
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sqrt(volume) and volatility 
both scale linearly with time 

Incorporates changing 
market conditions
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Scaled fit
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How to group?

1. Based on intrinsic properties of product:
• tick size
• liquidity
• etc

2. Based on regression fit itself:
• mean and variance of coefficients

This does not work

This works
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Grouping by intrinsic properties

Liquidity 
= price change per volume traded

Tick size
= average spread in terms of 
minimum price increment
= reversion ratio (Robert/Rosenbaum)
= average quote size / average trade size
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Ultra-High-Frequency Data: The Model with
Uncertainty Zones
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ABSTRACT
In this paper, we provide a model which accommodates the assump-
tion of a continuous efficient price with the inherent properties of
ultra-high-frequency transaction data (price discreteness, irregular
temporal spacing, diurnal patterns...). Our approach consists in de-
signing a stochastic mechanism for deriving the transaction prices
from the latent efficient price. The main idea behind the model is that,
if a transaction occurs at some value on the tick grid and leads to a
price change, then the efficient price has been close enough to this
value shortly before the transaction. We call uncertainty zones the
bands around the mid-tick grid where the efficient price is too far
from the tick grid to trigger a price change. In our setting, the width
of these uncertainty zones quantifies the aversion to price changes
of the market participants. Furthermore, this model enables us to de-
rive approximated values of the efficient price at some random times,
which is particularly useful for building statistical procedures. Con-
vincing results are obtained through a simulation study and the use
of the model over 10 representative stocks.

Nowadays, a large amount of ultra-high-frequency financial data is available.
Indeed, practitioners are able to accurately record the most relevant market quan-
tities such as transaction prices, bid-ask quotes, bid-ask volumes, and all associ-
ated time stamps. It is well known that these data are characterized by irregular
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Figure 1 Example of trajectories of the latent price and of the observed price. The crosses denote
the exit points associated to the τi .

the width of the uncertainty zones, and therefore, in tick unit, the larger the η, the
farther from the last traded price the efficient price has to be so that a price change
occurs.

One can also see the parameter η as a measure of the relevance of the tick size
on the market. Indeed, if η < 1/2, market participants are convinced they have
to trade at a new price before the efficient price crosses this new price on the tick
grid. So, it means that the tick size appears too large to them. Conversely, a large η
(η > 1/2) means that the tick size appears too small. From the tick size perspective,
an ideal market is consequently a market where η is equal to 1/2.

There are several other ways to interpret the parameter η. One can for exam-
ple consider the efficient price as a kind of random walk in a random environment
given by the order book. This environment is more or less reluctant when the ef-
ficient price is going through it. This reluctancy could be characterized by η. An-

 at N
ew

 York U
niversity on July 12, 2011

jfec.oxfordjournals.org
D

ow
nloaded from

 

ROBERT & ROSENBAUM | The Model with Uncertainty Zones 349

other possibility is to view η as a measure of the usual price depth explored by the
transaction volumes.

A natural estimation procedure for the parameter η is given in Robert and
Rosenbaum (2010a). We define an alternation (resp. continuation) of one tick as
a price jump of one tick whose direction is opposite to (resp. the same as) the

one of the preceding price jump. Let N
(a)
α,t and N

(c)
α,t be respectively the number of

alternations and continuations of one tick over the period [0, t]. An estimator of η
over [0, t] is given by

η̂α,t =
N

(c)
α,t

2N
(a)
α,t

.

In the asymptotics where the tick size goes to zero, a central limit theorem with
normalizing speed α−1 is proved in Robert and Rosenbaum (2010a). A slightly
more complicated estimator, using all the price jumps, is given together with its
asymptotic theory in the same paper.

1.3 Retrieving the Efficient Price and Statistical Procedures

Our model enables us to retrieve the values of the efficient price at time τi by the
simple relation

Xτi = Pti − sign(Pti − Pti−1)(1/2 − η)α.

Hence, since we can estimate η, we can approximately recover Xτi from Pti−1 and
Pti . As shown by the following examples, this is very convenient for building sta-
tistical procedures relative to the efficient price.

Example 1. Estimation of the integrated volatility

An estimator of the integrated volatility of the efficient price over [0, t],
∫ t

0 σ2
s ds, is

simply given by a realized volatility measure computed over the estimated values
of the efficient price

∑
τi≤t

( X̂τi − X̂τi−1

X̂τi−1

)2
,

where X̂τi = Pti − sign(Pti − Pti−1)(1/2 − η̂α,t)α. The accuracy of this estimator is
α, and its asymptotic theory is available in Robert and Rosenbaum (2010a). It is
also shown in the same paper that, in the case where two assets are observed,
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Subdivide based on these parameters

Does not work (does not give meaningful results)
because points that are close in parameters 
are not close in cost models
 
Problem: market impact model depends on properties 
that are not part of market data 
for example, size of underlying asset.
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Variation of exponent across products

large tick

small tick

optimal fit exponent

Do not see correlation 
of exponent with tick size

Exponent between 0.5 and 1 
consistent with various theories
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Variation of scaled coefficients across products

-1 0 1 2 3 4

Scaled coefficient

1.55

PL (eta=0.525)
HO (eta=0.517)
RB (eta=0.513)

EMD (eta=0.48)
6J (eta=0.441)
LE (eta=0.439)
6C (eta=0.429)
6B (eta=0.425)
HE (eta=0.419)
6E (eta=0.411)

NQ (eta=0.403)
YM (eta=0.4)

UB (eta=0.393)
6A (eta=0.379)

HG (eta=0.356)
NG (eta=0.345)
GC (eta=0.319)

ZS (eta=0.31)
SI (eta=0.309)

ZW (eta=0.271)
ZB (eta=0.246)
CL (eta=0.221)
ZF (eta=0.216)
GE (eta=0.213)
ES (eta=0.141)
ZN (eta=0.139)
ZC (eta=0.135)
ZT (eta=0.112)

03 Jan 2017 to 14 Nov 2017

-0.001 0.000 0.001 0.002 0.003 0.004 0.005

Scaled constant

0.00178

PL (eta=0.525)
HO (eta=0.517)
RB (eta=0.513)

EMD (eta=0.48)
6J (eta=0.441)
LE (eta=0.439)
6C (eta=0.429)
6B (eta=0.425)
HE (eta=0.419)
6E (eta=0.411)

NQ (eta=0.403)
YM (eta=0.4)

UB (eta=0.393)
6A (eta=0.379)

HG (eta=0.356)
NG (eta=0.345)
GC (eta=0.319)

ZS (eta=0.31)
SI (eta=0.309)

ZW (eta=0.271)
ZB (eta=0.246)
CL (eta=0.221)
ZF (eta=0.216)
GE (eta=0.213)
ES (eta=0.141)
ZN (eta=0.139)
ZC (eta=0.135)
ZT (eta=0.112)

03 Jan 2017 to 14 Nov 2017

Coefficients do not depend on 
tick size in consistent way



-0.02 -0.01 0.00 0.01 0.02

-0.2

-0.1

0.0

0.1

0.2

0.3

Intercept

C
oe

ffi
ci

en
t o

n 
sq

rt(
X

/V
)

GE

PL

NG

GC

HO

SI

RB

PA

ZN

CL

ES

ZF

ZL
RTY

ZW

ZC

ZS

ZM
ZB

LE
HE

ZT

HG

GF

UB

KE

TN

6E

NQ

6B

6J

YM

6C

6M

6S

6N

6A
ALL

42

Subdivide based on fit itself
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Commonality in products
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Distance between Gaussian distributions

Most probable point

Distance = -log prob 
of most probable point 
(like a 2-variable t-test)
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Clustering based on this distance

CME metals

Make combined 
fit for

precious metals

Copper (HG) 
on its own
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Clustering is not stable on whole data set
Conclusion: cluster 

within exchange and class.
Gives reasonable accuracy 
and economically sensible



Conclusions

Market impact modeling is noisy
R2 terrible, t-stats good
ability to predict any particular trade is poor

Need to use physical reasoning and ad hoc decisions
focus on parameter ranges that are economically important

Futures challenge is hetergeneous products
need to cluster based on economic properties and fit
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