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QB = trade execution

Execute order as agent for client

Goal: best final average execution price
What is a good price!

Evaluate relative to benchmark

benchmark defines an "ideal” trade
different benchmarks give different strategies
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Slippage

Difference of final average execution price and benchmark

execution - benchmark for buys
benchmark - execution for sells

Positive slippage is bad, negative is good
For agency execution, minimize this




quantitative

BOIt: al”l‘iva| Pl‘ice Report execution price

1282.9 |V

1282.8 —

1282.7 =

A Aggressive fills

Passive fills

¥ Intended passive
Cumulative exec

@ Market trades
Limit orders

— Cumulative VWAP

- Microprice

Bid-ask

Arrival price 1282.6
benchmark 12825
("strike")

1282.2 =

1282.1 =

1282.0 —

1281.9 —

1281.8 —

1281.7 =

I 100 lots

GCz7

8E-v1.cl

and slippage
SELL 40 GCZ7 BOLT relative to benchmark

Exec = 1282.2 Cost to strike = -1.62 tick = -$16.25 per lot

J_—f; VWAP 1282.3
Exec 1282.2 \
' Also report other

benchmarks for interest
(but these are not
targeted by this algo)

ys9l.ctyeauod .

12:14:20 12:14:40 12:15:00 12:15:20 12:15:40 12:16:00 12:16:20 12:16:40 12:17:00 12:17:20

CST on Tue 14 Nov 2017




quantitative

\5
Strobe: average price on interval

SELL 1251 ZFZ7 STROBE

For Strobe, execution
approximately follows
volume curve, but
also opportunistic
when can improve
performance
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We focus on Bolt and arrival price

Arrival price is most fundamental
represents trade completed immediately at decision price

Arrival price is cleanest benchmark
reference point is in past, not affected by trading

Arrival price is most challenging to model
market direction is biggest contributor
lots of statistical noise
market impact and alpha are inextricable
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Example time-dependent model

Quantitative trading | Cutting edge

Equity market Impact

The impact of large trades on prices is very important and widely discussed, but rarely
measured. Using a large data set from a major bank and a simple but realistic theoretical
model, Robert Aimgren, Chee Thum, Emmanuel Hauptmann and Hong Li propose that impact
IS a 3/5 power law of block size, with specific dependence on trade duration, daily volume,
volatility and shares outstanding. The results can be directly incorporated into an optimal
trade scheduling algorithm and pre- and post-trade cost estimation

A. Distinguishing features of our model

Advantages Disadvantages

B Calibrated from real data M Based only on Citigroup data
B Includes time component B Little data for small-cap stocks
B Incorporates intra-day profiles M Little data for very large trades

B Uses non-linear impact functions
B Confidence levels for coefficients

WWW.RISK.NET  JULY 2005 RISK
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Available data is
typical of institutional
trade records

- The stock symbol, requested order size (number of shares) and sign
(buy or sell) of the entire order. Client identification is removed.

- The times and methods by which transactions were submitted by
the Citigroup trader to the market. We take the time tg of the first
transaction to be the start of the order. Some of these transactions
are sent as market orders, some are sent as limit orders, and some
are submitted to Citigroup’s automated VWAP server. Except for
the starting time tp, and except to exclude VWAP orders, we make
no use of this transaction information.

- The times, sizes, and prices of execution corresponding to each
transaction. Some transactions are cancelled or only partially exe-
cuted; we use only the completed price and size. We denote execu-
tion times by t4,...,ty, sizes by x1, ..., Xy, and prices by Sy, ..., Sx.

December 2001 through June 2003.

29,509 orders in our data set.

1. A typical trading trajectory

2,500

2,000

1,500

1,000

Shares remaining

500 -

9 10 11 12 13 14 15 16
Time of day

The vertical axis is shares remaining and each step downwards is one
execution. The trajectory starts at the first transaction recorded in the

system; the program ends when the last execution has been completed.

The dashed line is our continuous-time approximation
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Subtlety: Impact vs alpha

You anticipate price increase

|

You enter a buy order
to profit from increase

|

Price goes up

Impact or alpha?

No action in market is independent
of what came before, nor
of what is expected to come after.

Impossible to separate
these two: take an
empirical point of view
and only summarize
combined result

ol
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Goal of market impact modeling

Predict

Slippage for a particular contemplated order
buy 500 |0-year Treasury over the next 2 hours

Dependence on variables that can be adjusted
what happens if we trade 200 or 1000, or take 3 hours!?

Uses
Trade decision-making
how should we choose execution parameters?

Post-trade analysis
what products / brokers / traders were good or bad relative to model?




quantitative

Data resources

Large variety of orders executed in past

thousands per day
many different products and market conditions

'What happened the last time that we did
something "like" this?’

\11
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Classic problem in statistics / machine learning

One output variable: slippage X1
Many input variables: : —> Y
Order parameters: X
n

symbol, side, size, start time, duration, etc

Market parameters known before trading:
forecast volume, volatility, spread, quote size
real-time volume, volatility, spread, quote size

Market parameters discovered during trading:

price direction (most important)
evolution of volume, volatility, etc

\12
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Analytical techniques

Regression

specific function depending on parameters
easy interpretation, not always accurate

Supervised learning

many powerful modern techniques
neural nets, trees, support vector machines, etc

not always easy to interpret

v =f(x1,...,%Xn)
Y = X+ Bi1x1 + =+ BuXn
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Challenge in market impact modeling

Very large noise relative to signal

Criterion of minimum discrepancy is hard to apply
Main criterion: residuals, etc, should not depend
other variables
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Strategy

|. Single asset fitting

2. Multi-asset fitting across all universe of futures products

\15
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Example:

ES (SP500 futures) trades from Sep 2018 through Dec 2019

all clients merged together (except private data)

Outright contracts only, mostly front month
Exclude orders with limit price
Exclude clients who cancel more than 5% of orders

For "market impact”, most important variable is size

hypothesis: large trades have higher slippage
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Raw data

Slight "jitter" to show
overlapping points
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Does cost increase with order size!?

Slippage to midpoint as fraction of min px incr

Yes, cost increases with size,
but error bars are large

where it is most interesting

—— Bin means _ _
— Weighted mean cost = 1.84 ‘
— Median size = 14 .
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Where does the cost come from/!

Slippage to midpoint as fraction of min px incr

Most cost from small

Bin costs

— Weighted mean cost = 1.84
— Median size = 14

to medium orders
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Kernel estimator Roughly agrees

with bin averages
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Parametric model

order size
slippage

Yy = a + bx? X
Y

n
2
min » (a +bx; — yj)
a,b,y ._
j=1 . .
Two linear coefficients a,b

One exponent Y

Coefficients a, b determined linearly for each exponent Y

Y determined by one-dimensional minimization (easy!)
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One-dimensional search
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Fit curve: exponent = 0.812
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What should the exponent be!

Strong reasons to prefer k = 0.5
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Residual as function of participation rate
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Dependence of exponent on time

exponent

2.0 —

1.5 —

-
o

Exponent fit is very unstable

0.5 most of the time

0.5 —

0.0 —
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I
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Jul
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@6
Fit values on
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» 2 months
* | month




Dependence of coefficient on time

0.6 —

Reasonably stable

0o " with fixed exponent 0.5

0.4 —

0.3 —

quantitative

Anomalous period

Q3 2019

coefficient

0.2 —

0.1

0.0 —

Oct Jan Apr
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Conclusions of single-asset fitting

Fractional-power model gives reasonable agreement

Settle on exponent k = 0.5

Want to fit important part of parameter range (50-100)
Neglect participation rate
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Multi-asset fitting

Challenge: wide range of products
Not enough data for each one to fit individually
How to group together?
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Distribution of number of orders

5000 —

2000 —

1

Number of
distinct orders

000 —

500 —

200 —

100 —

50 —

20 —

10 —

Not enough data
down here--
need to combine
with other products

|
Good statistics

up here

| | | | |
10 20 30 40 o0

Futures contract number
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Comparison of coefficients:
normalize by volume and volatility

C X
— = — | 4+ error (Xx)
g f(V) f
— slippage
trade size

forecast daily volatility
forecast daily volume

< 9 = N0
|

= a + bx?
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Consistent with literature

PHYSICAL REVIEW X 1, 021006 (2011)

Anomalous Price Impact and the Critical Nature of Liquidity in Financial Markets

B. Toth, Y. Lempériere, C. Deremble, J. de Lataillade, J. Kockelkoren, and J.-P. Bouchaud

Capital Fund Management, 6, blvd Haussmann 75009 Paris, France
(Received 9 May 2011; published 31 October 2011)

We propose a dynamical theory of market liquidity that predicts that the average supply/demand profile
1s V shaped and vanishes around the current price. This result is generic, and only relies on mild
assumptions about the order flow and on the fact that prices are, to a first approximation, diffusive. This
naturally accounts for two striking stylized facts: First, large metaorders have to be fragmented in order to
be digested by the liquidity funnel, which leads to a long memory in the sign of the order flow. Second, the
anomalously small local liquidity induces a breakdown of the linear response and a diverging impact of
small orders, explaining the “‘square-root’ impact law, for which we provide additional empirical support.
Finally, we test our arguments quantitatively using a numerical model of order flow based on the same
minimal ingredients.

sqrt(volume) and volatility
both scale linearly with time
Incorporates changing
market conditions

Impact

Jun. 2007 - Dec. 2010
10- :I T T IIIIIII T T IIIIIII

— Small ticks
— Large ticks
— 0=1/2

= 0=1

10

A/C

10 10 10 10
Qv

FIG. 1. The impact of metaorders for Capital Fund
Management proprietary trades on futures markets, in the period
from June 2007 to December 2010. Impact is measured here as
the average execution shortfall of a metaorder of size Q.

the average relative price change A between the first and
the last trade of a metaorder of size QO 1s well described
by the so-called “‘square-root” law:

AQ) = Vo2 (1)

where o 1s the daily volatility of the asset and V 1s the daily
traded volume, and both quantities are measured contem-
poraneously to the trade. The numerical constant Y 1s of
order unity. Published and unpublished data suggest
slightly different versions of this law; in particular, the
/O dependence is more generally described as a power-
law relation A(Q) = Q°, with § in the range 0.4 to 0.7

[
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Scaled fit
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How to group?

|. Based on intrinsic properties of product:

- tick size This does not work
liquidity
etc
2. Based on regression fit itself: This works

mean and variance of coefficients
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Grouping by intrinsic properties

Liquidity

= price change per volume traded

Tick size

= average spread in terms of

minimum price increment

= reversion ratio (Robert/Rosenbaum)
= average quote size / average trade size

-10 -

10

llliquidity =
slope of regression line

CLM3

Price change in bin

Signed volume in bin

| | | | | |
-200  -100 0 100 200

300
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Large tick vs small tick

Journal of Financial Econometrics, 2011, Vol. 9, No. 2, 344-366

A New Approach for the Dynamics of

Ultra-High-Frequency Data: The Model with

Uncertainty Zones

CHRISTIAN Y. ROBERT
CREST and ENSAE Paris Tech

MATHIEU ROSENBAUM
CMAP-Ecole Polytechnique Paris UMR CNRS 7641

ABSTRACT

In this paper, we provide a model which accommodates the assump-
tion of a continuous efficient price with the inherent properties of
ultra-high-frequency transaction data (price discreteness, irregular
temporal spacing, diurnal patterns..). Our approach consists in de-
signing a stochastic mechanism for deriving the transaction prices
from the latent efficient price. The main idea behind the model is that,
if a transaction occurs at some value on the tick grid and leads to a
price change, then the efficient price has been close enough to this
value shortly before the transaction. We call uncertainty zones the
bands around the mid-tick grid where the efficient price is too far
from the tick grid to trigger a price change. In our setting, the width
of these uncertainty zones quantifies the aversion to price changes
of the market participants. Furthermore, this model enables us to de-
rive approximated values of the efficient price at some random times,
which is particularly useful for building statistical procedures. Con-
vincing results are obtained through a simulation study and the use
of the model over 10 representative stocks.

One can also see the parameter 77 as a measure of the relevance of the tick size
on the market. Indeed, if # < 1/2, market participants are convinced they have
to trade at a new price before the efficient price crosses this new price on the tick
grid. So, it means that the tick size appears too large to them. Conversely, a large 7
(7 > 1/2) means that the tick size appears too small. From the tick size perspective,
an ideal market is consequently a market where 7 is equal to 1/2.

A natural estimation procedure for the parameter 77 is given in Robert and
Rosenbaum (2010a). We define an alternation (resp. continuation) of one tick as
a price jump of one tick whose direction is opposite to (resp. the same as) the

one of the preceding price jump. Let Dgf? and N o(c,ct) be respectively the number of
alternations and continuations of one tick over the period |0, t]. An estimator of #

over |0, t] is given by

N(Ct)
” Q,
Hat =

AN

[
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Robert/Rosenbaum eta
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Tick size vs

nondimensional liquidity
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Subdivide based on these parameters

Does not work (does not give meaningful results)
because points that are close in parameters
are not close in cost models

Problem: market impact model depends on properties
that are not part of market data
for example, size of underlying asset.
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Variation of exponent across products

small tick

large tick

01 Jan 2017 to 14 Nov 2017

PL (eta=0.525)
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quantitative

Variation
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quantitative

Subdivide based

Coefficient on sqrt(X/V)
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quantitative

Commonality in products

: CME metals:
precious metals
vs base metals (copper)

Intercept




quantitative

Distance between Gaussian distributions

1 —

Distance = -log prob
of most probable point
(like a 2-variable t-test)

Most probable point
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Clustering based on this distance

CME metals
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quantitative

\47
Clustering is not stable on whole data set

S Conclusion: cluster

! within exchange and class.
@5 i — Gives reasonable accuracy
&

|
A== and economically sensible
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quantitative

Conclusions

Market impact modeling is noisy

RZ terrible, t-stats good
ability to predict any particular trade is poor

Need to use physical reasoning and ad hoc decisions
focus on parameter ranges that are economically important

Futures challenge is hetergeneous products
need to cluster based on economic properties and fit




