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Introduction



Market Making

What is a market maker?

• A market maker is a liquidity provider. He / she provides bid and

ask prices for a list of assets to other market participants.

• Today, market makers are often replaced by market making

algorithms.

A market maker faces a complex optimization problem

• Makes money out of buying low and selling high (bid-ask spread).

• Faces the risk that the price moves adversely without him/her being

able to unwind his position rapidly enough.
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Literature

Literature: a bit of history

• Ho and Stoll (1981)

• Grossman and Miller (1988)

New interest 20 years later

• Avellaneda and Stoikov. High-frequency trading in a limit order

book. Quantitative Finance, 2008.
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Avellaneda-Stoikov: a first model



Avellaneda-Stoikov modelling framework

• One asset with reference price process (mid-price) (St)t :

dSt = σdWt .

• Bid and ask prices of the MM denoted respectively

Sb
t = St − δbt and Sa

t = St + δat .

• Point processes Nb and Na (indep. of W ) for the transactions (size

z = 1). Inventory (qt)t :

dqt = zdNb
t − zdNa

t .
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Avellaneda-Stoikov modelling framework (continued)

• The intensities of Nb and Na depend on the distance to the

reference price:

λbt = Λb(δbt ) and λat = Λa(δat ).

Λb, Λa decreasing. Avellaneda and Stoikov suggested

Λb(δ) = Λa(δ) = Ae−kδ.

• Cash process (Xt)t :

dXt = zSa
t dN

a
t − zSb

t dN
b
t = −Stdqt + δat zdN

a
t + δbt zdN

b
t .

Three state variables: X (cash), q (inventory), and S (price).
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Avellaneda-Stoikov objective function and HJB equation

CARA objective function

sup
(δat )t ,(δbt )t∈A

E [− exp (−γ(XT + qTST ))] ,

where γ is the absolute risk aversion parameter, T a time horizon, and A
the set of predictable processes bounded from below.

An (a priori) awful Hamilton-Jacobi-Bellman

(HJB) 0 = ∂tu(t, x , q,S) +
1

2
σ2∂2

SSu(t, x , q,S)

+ sup
δb

Λb(δb)
[
u(t, x − zS + zδb, q + z ,S)− u(t, x , q,S)

]
+ sup

δa
Λa(δa) [u(t, x + zS + zδa, q − z ,S)− u(t, x , q,S)]

with final condition:

u(T , x , q,S) = − exp (−γ(x + qS)) .
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A rigorous analysis

Solution of the Avellaneda-Stoikov model

• Guéant, Lehalle, and Fernandez-Tapia. Dealing with the Inventory

Risk: A solution to the market making problem. MAFE, 2013.

When risk limits are set, solving the AS model with exponential intensities

boils down to solving a system of linear ordinary differential equations!
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Market making: an interesting

research strand



Literature

Many extensions of the initial one-asset model

• Multi-asset framework.

• General intensities (e.g. logistic).

• Variable RFQ sizes.

• Different objective functions (mean-variance-like criterion).

• Client tiering.

• Adverse selection.

• Drift / signal / alpha.

• Access to liquidity pools (exchange / IDB - for some asset classes).

• Market and limit orders (not relevant for all asset classes).

• ...
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Literature

Papers by Cartea, Jaimungal et al.

• Cartea, Jaimungal, and Ricci. Buy low, sell high: A high frequency

trading perspective. SIAM Journal on Financial Mathematics, 2014.

• Cartea, Donnelly, and Jaimungal. Algorithmic trading with model

uncertainty. SIAM Journal on Financial Mathematics, 2017.
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Literature

Figure 1: A nice book dealing with market making
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Literature

Papers by Guilbaud and Pham

• Guilbaud and Pham. Optimal High-Frequency Trading with limit

and market orders. Quantitative Finance, 2013.

• Guilbaud and Pham. Optimal High-Frequency Trading in a Pro-Rata

Microstructure with Predictive Information. Mathematical Finance,

2015.
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Multi-asset market making

Extensions to multi-asset portfolios

• Guéant. The Financial

Mathematics of Market Liquidity.

From Optimal Execution to Market

Making. CRC Press, 2016.

• Guéant. Optimal market making.

Applied Mathematical Finance,

2017.

Figure 2: Another nice book
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Multi-asset market making

The problem

The number of equations to solve typically grows exponentially with the

number of assets.

Attempts to solve it

• Dimensionality reduction with risk factors: Bergault and Guéant,

Size matters for OTC market makers: general results and

dimensionality reduction techniques, 2020.

• Reinforcement learning techniques to go beyond the curse of

dimensionality: Guéant and Manziuk, Deep reinforcement learning

for market making in corporate bonds: beating the curse of

dimensionality, Applied Mathematical Finance, 2019.

• Other works in progress.

Our paper on options is inspired by the first approach.
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dimensionality: Guéant and Manziuk, Deep reinforcement learning

for market making in corporate bonds: beating the curse of

dimensionality, Applied Mathematical Finance, 2019.

• Other works in progress.

Our paper on options is inspired by the first approach.

13



Asset classes

Extensions to derivatives

• Stoikov and Saglam. Option market making under inventory risk,

Review of Derivatives Research, 2009.

• Abergel and El Aoud. A stochastic control approach to option

market making. Market Microstructure and Liquidity, 2015.

• Baldacci, Bergault and Guéant. Algorithmic market making

for options. 2020. (On ArXiv, in revision)

Relevant models should handle several option contracts and tackle the

question of ∆-hedging / trading in the underlying asset.
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Option market making: the

model



The market

Asset price dynamics under P{
dSt = µStdt +

√
νtStdW

S
t

dνt = aP(t, νt)dt + ξ
√
νtdW

ν
t .

Asset price dynamics under Q (pricing measure) - r = 0{
dSt =

√
νtStdŴ

S
t

dνt = aQ(t, νt)dt + ξ
√
νtdŴ

ν
t .

Another one-factor model can be chosen (e.g. Bergomi). Two-factor

models are also possible: they increase the dimensionality of the problem

by 1.
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The market

The options

• We consider N ≥ 1 European options written on the above asset.

• For i = 1, . . . ,N:

• Maturity of the i-th option: T i

• Price process of the i-th option: (Oi
t)t∈[0,T i ]

Partial differential equation

Oi
t = O i (t,St , νt) where

0 = ∂tO
i (t,S , ν) + aQ(t, ν)∂νO

i (t,S , ν) +
1

2
νS2∂2

SSO
i (t,S , ν)

+ ρξνS∂2
νSO

i (t,S , ν) +
1

2
ξ2ν∂2

ννO
i (t,S , ν).
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Requests

Distribution of requests

• Requests on option i arrive with intensities λi,brequest and λi,arequest.

• Request sizes for option i are distributed according to probability

measures µi,b(dz) and µi,a(dz).

• Bid and ask prices answered for option i (transaction of size z) if the

transaction does not violate risk limits:

Oi
t − δ

i,b
t (z) and Oi

t + δi,at (z).

• Probabilities of trading:

f i,b(δi,bt (z)) and f i,a(δi,at (z)).

17



Inventory in the options

Resulting dynamics of the inventory process

dqit =

∫
R∗+

zN i,b(dt, dz)−
∫
R∗+

zN i,a(dt, dz),

where N i,b and N i,a are marked point processes with kernels:

ν i,bt (dz) = λi,brequestf
i,b(δi,bt (z))︸ ︷︷ ︸

Λi,b(δi,bt (z))

1{qt−+ze i∈Q}µ
i,b(dz),

ν i,at (dz) = λi,arequestf
i,a(δi,at (z))︸ ︷︷ ︸

Λi,a(δi,at (z))

1{qt−−ze i∈Q}µ
i,a(dz).

18



Inventory in the underlying asset

∆-hedging

The market maker ensures perfect ∆-hedging where

∆t =
N∑
i=1

∂SOi (t,St , νt)q
i
t .

Continuous trading is our real assumption:

• The assumption of perfect ∆-hedging can in fact be relaxed.

• One can hedge part of the vega by trading the underlying asset.

→ See the appendix of our paper on ArXiv.

19



Inventory in the underlying asset

∆-hedging

The market maker ensures perfect ∆-hedging where

∆t =
N∑
i=1

∂SOi (t,St , νt)q
i
t .

Continuous trading is our real assumption:

• The assumption of perfect ∆-hedging can in fact be relaxed.

• One can hedge part of the vega by trading the underlying asset.

→ See the appendix of our paper on ArXiv.

19



Cash dynamics and Mark-to-Market value of the portfolio

Cash dynamics

dXt =
N∑
i=1

(∫
R∗+

z
(
δi,bt (z)N i,b(dt, dz) + δi,at (z)N i,a(dt, dz)

)
−Oi

tdq
i
t

)
+Std∆t + d

〈
∆,S

〉
t
.

Mark-to-Market value of the portfolio

Vt = Xt −∆tSt +
N∑
i=1

qitOi
t .

20
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Dynamics of the Mark-to-Market value of the portfolio

Dynamics of the MtM value

dVt =
N∑
i=1

∫
R∗+

z
(
δi,bt (z)N i,b(dt, dz) + δi,at (z)N i,a(dt, dz)

)
+

N∑
i=1

qitdOi
t −∆tdSt

=
N∑
i=1

∫
R∗+

z
(
δi,at (z)N i,a(dt, dz) + δi,bt (z)N i,b(dt, dz)

)
+

N∑
i=1

qit∂νO
i (t,St , νt)

(
aP(t, νt)− aQ(t, νt)

)
dt

+
√
νtξq

i
t∂νO

i (t,St , νt)dW
ν
t .
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Introducing vegas

Vega of the i-th option

V i
t := ∂√νO

i (t,St , νt) = 2
√
νt∂νO

i (t,St , νt).

Simplified dynamics of the MtM value

dVt =
N∑
i=1

∫
R∗+

z
(
δi,at (z)N i,a(dt, dz) + δi,bt (z)N i,b(dt, dz)

)
+

N∑
i=1

qitV i
t

aP(t, νt)− aQ(t, νt)

2
√
νt

dt +
N∑
i=1

ξ

2
qitV i

tdW
ν
t .

22



Introducing vegas

Vega of the i-th option

V i
t := ∂√νO

i (t,St , νt) = 2
√
νt∂νO

i (t,St , νt).

Simplified dynamics of the MtM value

dVt =
N∑
i=1

∫
R∗+

z
(
δi,at (z)N i,a(dt, dz) + δi,bt (z)N i,b(dt, dz)

)
+

N∑
i=1

qitV i
t

aP(t, νt)− aQ(t, νt)

2
√
νt

dt +
N∑
i=1

ξ

2
qitV i

tdW
ν
t .

22



Option market making:

optimization problem,

assumptions, and approximations



Objective function

Objective function: risk-adjusted expectation

sup
δ∈A

E

VT −
γ

2

∫ T

0

(
N∑
i=1

ξ

2
qitV i

t

)2

dt

 .
for γ a risk aversion parameter and T a time horizon such that

T < mini T
i .

sup
δ∈A

E

∫ T

0

N∑
i=1

∑
j=a,b

∫
R∗+

zδi,jt (z)Λi,j(δi,jt (z))1{qt−±jze i∈Q}µ
i,j(dz)


+ qitV i

t

aP(t, νt)− aQ(t, νt)

2
√
νt

 dt − γξ2

8

∫ T

0

(
N∑
i=1

qitV i
t

)2

dt

 ,
where ±b = + and ±a = −.
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Value function

Value function

u : (t,S , ν, q) ∈ [0,T ]× R+2

×Q 7→ u(t,S , ν, q)

given by

u(t, S , ν, q) = sup
(δs )s∈[t,T ]∈At

E(t,S,ν,q)[∫ T

t

N∑
i=1

((∑
j=a,b

∫
R∗+

zδi,js (z)Λi,j(δi,js (z))1{qs−±j ze
i∈Q}µ

i,j(dz)
)

+qi
sV i

s
aP(s, νs)− aQ(s, νs)

2
√
νs

)
ds − γξ2

8

∫ T

t

( N∑
i=1

qi
sV i

s

)2

ds

]

The problem is written in (space) dimension N + 2: it is a priori

untractable!
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Beating the curse of dimensionality

Assumption 1

We approximate the vega of each option over [0,T ] by its value at time

t = 0, namely V i
t = V i

0 =: V i , i = 1, . . . ,N.

Assumption 2

Authorized inventories correspond to vega risk limits:

Q =

{
q ∈ RN

∣∣∣ N∑
i=1

qiV i ∈ [−V,V]

}
, with V ∈ R+∗.
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Change of variables

Portfolio vega

Vπt :=
N∑
i=1

qitV i .

Optimal control problem

v (t, ν,Vπ) = sup
(δs )s∈[t,T ]∈At

E(t,ν,Vπ)∫ T

t

 N∑
i=1

∑
j=a,b

∫
R∗+

zδi,js (z)Λi,j(δi,js (z))1|Vπs ±j zV i |≤Vµ
i,j(dz)


+Vπs

aP(s, νs)− aQ(s, νs)

2
√
νs

− γξ2

8
Vπs 2

 ds

 .
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Low-dimensional HJB equation

Low-dimensional HJB equation

The associated Hamilton-Jacobi-Bellman equation is:

0 = ∂tv(t, ν,Vπ) + aP(t, ν)∂νv(t, ν,Vπ) +
1

2
νξ2∂2

ννv(t, ν,Vπ)

+Vπ aP(t, ν)− aQ(t, ν)

2
√
ν

− γξ2

8
Vπ2

+
N∑
i=1

∑
j=a,b

∫
R∗+

z1|Vπ±j zV i |≤VH
i,j

(
v
(
t, ν,Vπ

)
− v
(
t, ν,Vπ ±j zV i

)
z

)
µi,j(dz),

with final condition v(T , ν,Vπ) = 0, where

H i,j(p) := sup
δi,j≥δ∞

Λi,j(δi,j)(δi,j − p).

This equation in (space) dimension 2 can be solved numerically on a grid

with a Euler scheme and linear interpolation.
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Optimal quotes

Once the value function is known, the optimal mid-to-bid and ask-to-mid

associated with the N options, are given by the following formula:

Optimal quotes

δi,j∗t (z) = max

(
δ∞,

(
Λi,j
)−1

(
−H i,j′

(
v
(
t, νt ,Vπt−

)
− v
(
t, νt ,Vπt− ±j zV i

)
z

)))
.
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Change of variables when aP = aQ

If aP = aQ, then v(t, ν,Vπ) = w(t,Vπ) where w is solution of the

simpler Hamilton-Jacobi-Bellman:

0 = ∂tw(t,Vπ)− γξ2

8
Vπ2

+
N∑
i=1

∑
j=a,b

∫
R∗+

z1|Vπ±j zV i |≤VH
i,j

(
w
(
t,Vπ

)
− w

(
t,Vπ ±j zV i

)
z

)
µi,j(dz),

with final condition w(T ,Vπ) = 0.

The problem is now in (space) dimension 1.
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Numerical results



Model parameters

. Stock price at time t = 0: S0 = 10 e.

. Instantaneous variance at time t = 0: ν0 = 0.0225 year−1.

. Heston model with aP(t, ν) = κP(θP − ν) where κP = 2 year−1 and

θP = 0.04 year−1, and aQ(t, ν) = κQ(θQ − ν) where κQ = 3 year−1

and θQ = 0.0225 year−1.

. Volatility of volatility: ξ = 0.2 year−1.

. Spot-variance correlation: ρ = −0.5.
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Options

Strikes and maturities

K = {8 e, 9 e, 10 e, 11 e, 12 e}

T = {1 year, 1.5 years, 2 years, 3 years}.

Intensities

Λi,j(δ) =
λrequest

1 + eα+ β

V i δ
, i ∈ {1, . . . ,N}, j = a, b.

where λrequest = 17640 = 252× 30 year−1, α = 0.7, and β = 150 year
1
2 .

Size of transactions

z i = 5·105

Oi
0

contracts: µi,b and µi,a are Dirac masses.

31



Options

Strikes and maturities

K = {8 e, 9 e, 10 e, 11 e, 12 e}

T = {1 year, 1.5 years, 2 years, 3 years}.

Intensities

Λi,j(δ) =
λrequest

1 + eα+ β

V i δ
, i ∈ {1, . . . ,N}, j = a, b.

where λrequest = 17640 = 252× 30 year−1, α = 0.7, and β = 150 year
1
2 .

Size of transactions

z i = 5·105

Oi
0

contracts: µi,b and µi,a are Dirac masses.

31



Options

Strikes and maturities

K = {8 e, 9 e, 10 e, 11 e, 12 e}

T = {1 year, 1.5 years, 2 years, 3 years}.

Intensities

Λi,j(δ) =
λrequest

1 + eα+ β

V i δ
, i ∈ {1, . . . ,N}, j = a, b.

where λrequest = 17640 = 252× 30 year−1, α = 0.7, and β = 150 year
1
2 .

Size of transactions

z i = 5·105

Oi
0

contracts: µi,b and µi,a are Dirac masses.

31



Implied volatility surface
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Figure 3: Implied volatility surface associated with the above parameters.
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Value function
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Figure 4: Value function as a function of the portfolio vega for ν = 0.0225 –

γ = 10−3 e−1, t=0, T=0.2 days.
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Convergence to stationary values
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Figure 5: Optimal mid-to-bid quotes as a function of time for ν = 0.0225 –

γ = 10−3 e−1.
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Optimal bid quotes
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Figure 6: Optimal mid-to-bid quotes divided by option price for K = 8 and

ν = 0.0225 – γ = 10−3 e−1.
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Optimal bid quotes
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Figure 7: Optimal mid-to-bid quotes divided by option price for K = 9 and

ν = 0.0225 – γ = 10−3 e−1.
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Optimal bid quotes
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Figure 8: Optimal mid-to-bid quotes divided by option price for K = 10 and

ν = 0.0225 – γ = 10−3 e−1.
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Optimal bid quotes
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Figure 9: Optimal mid-to-bid quotes divided by option price for K = 11 and

ν = 0.0225 – γ = 10−3 e−1.
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Optimal bid quotes
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Figure 10: Optimal mid-to-bid quotes divided by option price for K = 12 and

ν = 0.0225 – γ = 10−3 e−1.
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Optimal bid quotes in terms of IV
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Figure 11: Optimal bid quotes in terms of implied volatility for K = 8 and

ν = 0.0225 – γ = 10−3 e−1.
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Optimal bid quotes in terms of IV
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Figure 12: Optimal bid quotes in terms of implied volatility for K = 9 and

ν = 0.0225 – γ = 10−3 e−1.
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Optimal bid quotes in terms of IV
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Figure 13: Optimal bid quotes in terms of implied volatility for K = 10 and

ν = 0.0225 – γ = 10−3 e−1.
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Optimal bid quotes in terms of IV
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Figure 14: Optimal bid quotes in terms of implied volatility for K = 11 and

ν = 0.0225 – γ = 10−3 e−1.
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Optimal bid quotes in terms of IV
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Figure 15: Optimal bid quotes in terms of implied volatility for K = 12 and

ν = 0.0225 – γ = 10−3 e−1.
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Conclusive remarks

• Option market making is tractable using one- or two-factor

stochastic volatility models.

• It is possible to go beyond the constant-vega approximation using a

Taylor expansion around that approximation

→ see the appendix of our paper.

• A model with several underlying assets can easily be written. The

feasibility of numerical approximation with grids depend on the

global number of factors.
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Questions

Thanks for your attention.

Do not hesitate to make remarks and ask questions.
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