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In this article, we use circular gardens, Steiner’s porism and
Mobius transformations to construct Steiner chains of tangential
circles. We then explore some interesting area optimisation prob-
lems and touch on Soddy’s hexlet and the Duplin cyclide.

1 Introduction

teiner chains are a beautiful example in circle geome-
S try. A Steiner chain is defined as a chain of n circles, each

tangent to the previous one and the next one, and also to
two given non-intersecting circles [1], which we will call bound-
ing circles. We focus exclusively on Steiner chains, one of whose
bounding circles lies within the other.

In order to introduce one of the problems that occupied Jacob
Steiner in the 19th century, and make it more picturesque, let us
suppose the following scenario: a person owns a circular garden
with a circular pond in it on one side. Further, this person wants
to partially pave the space outside the pond with a chain of touch-
ing circular tiles which also touch the pond’s border and the cir-
cular fence of the garden. He starts outlining the shapes of the
tiles on the ground. Eventually, the last drawn tile happens to
touch the first one forming a closed chain of touching circles. He
then leaves to get some tools to start laying the actual tiles on
the ground. Meanwhile it rains and all marks have been erased.
‘When the man comes back, he cannot remember where he started.

Figure 1: A simple closed Steiner chain with 7 circles.’

So, the following natural question arises: if he starts draw-
ing circles at another location, can he hope to eventually obtain
a closed chain again? The answer turns out to be affirmative
and constitutes what is known as Steiner’s porism, presented in
the next section. A porism is a mathematical proposition, which
nowadays usually refers to a statement that is either not true, or is
true and holds for an infinite number of values, provided a certain
condition is satisfied. We define a closed Steiner chain to be such
that the first and last circles of the chain are tangent to each other.
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For the sake of simplicity, we will limit ourselves to simple
closed chains, i.e., wrapping only once around the inner bound-
ing circle. In Figure 1, we show a simple closed Steiner chain,
consisting of n = 7 circles.

A lot of fascinating properties have been discovered so far.
For example, it is known that the centres of the circles in the chain
lie either on an ellipse (or circle) when one of the bounding circles
lies within the other, or on a hyperbola if not. Also, the points of
tangency between the circles in the chain happen to lie on a cir-
cle [1]. More interestingly, using inversion, a feasibility criterion
has been established in [1] for whether a closed Steiner chain is
supported for a given n and a pair of bounding circles.

The problem we aim to tackle in this article, is somewhat the
opposite: given n positive numbers, does there exist a pair of
bounding circles such that we can arrange n circles with radii
equal to these numbers in a simple closed Steiner chain between
these bounding circles? In addition, if such chains exists, how
can we construct them? This can also be reformulated as a geo-
metrical problem of inscribing and circumscribing circles around
a chain of touching circles with given radii. We will also con-
sider some area optimisation, regarding maximal and minimal
area configurations for a given Steiner chain.

In all these, we mainly rely on the concept of Mébius trans-
Jformations. These are conformal (i.e. angle-preserving) maps in
the extended complex plane C = CU{oo}. What is really useful
about them, is that they map circlines (circles or lines) to cir-
clines [2]. In general a Mdbius transformation is a map of the

form
az+b

f(z):m7

(H
where z € @, and a, b, ¢, d € C with ad — be # 0 (so as to avoid
constant maps). We note that translation, scaling, and inversion
are particular cases of Mdbius transformations.

2 Steiner’s porism

We now state Steiner’s porism [1] and give an outline proof of it.

Theorem 1. (Steiner’s Porism) Given two bounding circles, if a
closed Steiner chain exists, then any circle touching both bound-
ing circles is a member of some closed Steiner chain. In other
words, there are infinitely many Steiner chains, which essentially
differ by rotation of the starting point of the chain.

Proof. We will first assume non-concentric bounding circles, be-
cause otherwise the result is trivial (all Steiner chains are formed
by a plain rotation of the first one). Suppose we have the exist-
ing Steiner chain, as assumed in the theorem. It is a well-known
fact that there exists a Mdbius transformation which takes two
non-concentric circles into a pair of concentric ones [2]. Since
this transformation is conformal, the points of tangency between
the images are preserved, and since it maps circlines to circlines,
the chain of circles between the original bounding circles gets
mapped to a Steiner chain of congruent circles between the two
concentric circles. Now, it is clear that we can rotate the resulting



chain to still obtain a Steiner chain. Inverting the transformation,
which is another Mobius transformation, we get a Steiner chain
which is dislocated relative to the original one. A little more anal-
ysis shows that, in fact, any circle touching the bounding ones
gives a Steiner chain in this way.

3 Criteria for existence, and construction of a
Steiner chain given n circles.

Suppose now that our gardener has n circular tiles of given radii.
Is it possible to create a circular garden with a circular pond in it
such that the given tiles can form a simple closed Steiner chain
between them? We pursue the answer to this question for n = 4,
and state how this can be generalised for bigger n. Note that the
case n = 3 always gives a positive answer, since we can uniquely
inscribe and circumscribe a circle between three touching circles,
thus, forming a Steiner chain.

Suppose the given radii are r, k = 1,...,4, assuming r is
the smallest. We start with a general Steiner chain S, consisting of
4 circles of radius p between two concentric bounding circles of
radii 7 and R (see Figure 2). Our method then consists of finding
a Mobius transformation which maps S to another Steiner chain
>3, consisting of 4 circles with the given radii. Eventually, we will
obtain a criterion for when this is possible and the map will give
us a way to construct the desired Steiner chain.

Figure 2: A closed Steiner chain with 4 circles between two
concentric bounding circles.

In order for S to be a valid chain, there is a relationship between
the various radii that needs to be satisfied. This is a particular
case of the general feasibility criterion, mentioned in Section 1.
r=(W2-1p, R=(V2+1)p )
Now, suppose the Mdbius transformation which takes S to X is
given by
az+b

_dw—b

a—cw'

cz+d )

where ad — be # 0 and without loss of generality, we can assume
d € R and d > 0 (by multiplying top and bottom of w by d, for
example). We further insist that |d/c| > R, which ensures that S
will be mapped sensibly to 3, preserving the same configuration.
Basically, d/c is the number that is sent to infinity by w, and we
want this number to be outside .S.

We can now write down the images of the four circles in the
chain S as

|z —V2pe% | = p & 4)
b+ v/2paeidr plc] a ‘ 5)
w— = _—
d + 2pceifx d + \/2pceifx c
where 0, = 7k/2,k = 0,...,3. Similarly, we can write the

images of the bounding circles |z| = r and |z| = R. Now, we
have the images of the four circles, written in an Apollonius form.
There are expressions for the radii and centres of such circles [2].
Thus, we need

B |ad — bé|
|d 4 V22 — |¢f2

k=1,...,4, (6

Tk

where a = pa, ¢ = pc, and we note that due to the assumptions
on a, b, ¢, d, the denominator is positive (by a simple reverse tri-
angle inequality). Now, having the four relations (6), it turns out
they are more easily manipulated by introducing Ay, = 7y /r1. We
note that Ay = 1 and Ay > 1 for k = 2, 3,4. With this, we are
able to derive our criteria for existence of a Steiner chain as

Az o
A= 82 7
D V5 VT VR )

2/\3 2)\3
< Ay < 8
(Vs +1)2 727 (Vg — 1)2 ®)
Ao < A3 9)

We note that this also implies Ay < A3. During the derivation
process, we have also been able to find relations between the co-
efficients a, b, ¢, d, which give us families of Mobius transforma-
tions that can construct the required Steiner chain. By way of
example and simple check, we use the following radii: v/2/17,
\/5/9, V2, ﬂ/Q The corresponding Ay are: 1, 17/9, 17, 17/9.
Thus, it is clear that these do satisfy our criteria, so they can form
a Steiner chain in that order. Doing the necessary calculations,
we see that one map that satisfies the requirements is 1/(z — 2),
using p = 1/+/2. In order to construct the Steiner chain, we ap-
ply this map to S with the specified p. We show the result in
Figure 3. Our method can be easily generalised for n circles. The
difference comes in the relations (6), where now we will have n
of them with 0, = 27k/n,k =0,...,n— 1.
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Figure 3: Construction of a Steiner chain with circles’ radlii

T1,...,74.
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4 Area optimisation

Going back to the gardener’s scenario, suppose he wants to pave
his garden between the fence and the pond with a Steiner chain,
using as little concrete for the tiles as possible. More generally,
taking into account Steiner’s porism, we can ask for the maxi-
mal and minimal configurations of a given Steiner chain. Again,
this can be done for n circles, but in the interest of brevity, we
consider the case n = 4. We approach the problem in the follow-
ing way: starting with a given Steiner chain X, we find a Mobius
transformation which takes 3 to a Steiner chain S enclosed be-
tween concentric bounding circles. Then, we know that all pos-
sible Steiner chains in the original configuration are obtained by
rotating .S by an arbitrary angle 6, and then mapping back using
the inverse transformation. Thus, we will express the total area
as a function of 6. The expression could subsequently be differ-
entiated to obtain the maximum and minimum, which must exist
since the expression for the area is a continuous function over a
compact interval [0, 27]. Using the previous example, we rotate
S (as in Figure 2, using p = 1/+/2) by an angle 6 and find the
images of the circles in the chain

_ ef(9k+9>‘ _ b

7

using w = 1/(z — 2). As aresult, we find that the area is

‘z (10)

1 1
A(B) =2m ((9+8C089)2 i (9 —8cosh)?
1
T _gsmae (9+8sin6)2) - b

Differentiating this, it is straightforward to see that this function
has maxima at 0 = 0,7 /2, 7, 37/2 of value A ~ 6.46, and min-
imaat @ = 7/4,3n /4,57 /4, Tn /4 of value A ~ 1.18. Thus, the
Steiner chain with maximal area is actually the one shown in Fig-
ure 3. We show the resulting minimal configuration in Figure 4.
See [3] for an interesting animation of rotating Steiner chains for
any number of circles.

0
0 02 04

Figure 4: Minimal area configuration for X.

5 Results and discussion

Looking at criteria (7-9), we observe several interesting proper-
ties for 4-circle Steiner chains. Firstly, if there are unique small-
est and biggest circles, then they cannot be neighbours (follows
from A3 > A9, Ay > Ap). Second, if the two largest (or small-
est) circles are the same, then the other two must also be the
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same. Finally, if the middle (in size) two circles are the same (i.e.,
A2 = Ay), then we see that A3 = A2 /(2—\2). This means that we
must have Ay < 2, i.e., the middle-sized circles cannot be larger
than twice the smallest one. We remark that we obtain families of
Mobius transformations, which when applied to the Steiner chain
between concentric bounding circles, give us a way of construct-
ing the desired Steiner chain from given circles (if they pass the
criteria). From a geometrical point of view, our method gives a
feasibility criterion and a construction for inscribing and circum-
scribing a circle around a chain of n pairwise touching circles
with specified radii.

6 Conclusions and generalisation

Unlike the classical feasibility problem for Steiner chains given
two bounding circles, we have derived criteria for when 4 given
circles can form a Steiner chain, regardless of the bounding cir-
cles. We have produced a method for constructing such Steiner
chains if they exist. This can be generalised to n circles, but the
algebra becomes messier. We have also looked at an area op-
timisation problem and presented a way of determining minimal
and maximal area configurations of a given Steiner chain. Steiner
chains also have fascinating generalisations to 3D, in terms of
spheres, an example of which is Soddy’s hexlet, as in Figure 5(a).
The interesting thing about it is that, its envelope is the Dupin cy-
clide (Figure 5(b)), which is the inversion of the torus.
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Figure 5: (a) Soddy’s hexlet2and (b) Dupin cyclide.’

Notes

1. From  https://commons.wikimedia.org/wiki/File:
Steiner_chain_7mer.svg, created by WillowW, under CC
Attribution-Share Alike 3.0 Unported license.

2. CreatedbyHoribe Kazunori,http://horibe. jp/Gr8F .HIM.

3. From https://commons.wikimedia.org/wiki/File:
Cyclide.png, created by Xah Lee, under CC Attribution-
Share Alike 3.0 Unported license.
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