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Abstract: Monitoring ocean acoustic noise has been the subject of considerable recent study,
motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination
of measuring ocean sound using an acoustic sensor network and modelling sources of sound and
sound propagation has been proposed as an approach to estimating the acoustic noise map within a
region of interest. However, strategies for developing a monitoring network are not well established.
In this paper, considerations for designing a network are investigated using a simulated scenario
based on the measurement of sound from ships in a shipping lane. Using models for the sources of
the sound and for sound propagation, a noise map is calculated and measurements of the noise map
by a sensor network within the region of interest are simulated. A compressive sensing algorithm,
which exploits the sparsity of the representation of the noise map in terms of the sources, is used to
estimate the locations and levels of the sources and thence the entire noise map within the region of
interest. It is shown that although the spatial resolution to which the sound sources can be identified
is generally limited, estimates of aggregated measures of the noise map can be obtained that are
more reliable compared with those provided by other approaches.
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1. Introduction

There has recently been increasing concern over the potential effects of anthropogenic acoustic
noise on marine life, and the influence this noise poses for the sustainability of key marine
species, biodiversity, ecosystems and the overall health of our seas [1–3]. Such noise-generating
activities include offshore oil and gas exploration, developments of offshore platforms and services,
marine renewable energy developments, dredging and aggregate extraction, construction activities,
naval sonars, explosive decommissioning of offshore developments, and disposal of munitions and
ordnance. In addition, the rapid increase in commercial shipping traffic has the potential to increase
the background level of sound in the ocean. The effect on marine fauna of high amplitude sources
may include physiological effects (e.g., damage to hearing) or behavioural effects (e.g., flight response
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or displacement from habitats). An increase in background noise level may also have chronic effects
(e.g., masking of biologically produced sound vital for communication and foraging) [1–3].

This concern has motivated increased monitoring of ocean acoustic noise, with a number of
recent studies being reported. Examples include studies of low frequency sound in the Northeast
Pacific Ocean, which demonstrate an increase over the last 60 years [4–8]. An increase has also been
observed in low frequency levels (2 dB to 3 dB in the range 5 Hz to 115 Hz) in the Indian Ocean over
the last decade [9,10]. More recently, observations in the Northeast Pacific Ocean show a constant
level or slightly decreasing trend in low frequency noise [11], and observations from deep-water
stations installed in the Atlantic, Pacific and Indian oceans could not clearly identify common trends
between the stations [12,13], making it difficult to make generalised statements about global changes
in ocean noise. In general, deep water observations of low frequency trends are influenced by noise
from ice breaking, whales and noise from geophysical surveys, but noise from ship traffic is also
an influence [9,12] and the growth in ship traffic is widely considered as a potentially significant
influence factor in global ocean noise levels [14,15].

There have been no long-term studies of ocean noise in the shallow water of the continental
shelf, and trends are therefore unknown. However, the trends in noise levels in these regions, and the
spatial distribution of the noise, is increasingly subject to regulation. For example, the European
Union’s Marine Strategy Framework Directive (2008/56/EC) requires member states to monitor
ocean acoustic noise in order to demonstrate Good Environmental Status [16]. Here, acoustic noise
is considered to be unwanted sound from anthropogenic sources, and in the Directive it is explicitly
classed as a pollutant. This has led to interest in improved understanding of the noise radiated by the
sources, and in noise maps, which describe the spatial variation of the acoustic noise levels within a
region of interest [17].

There are different approaches to estimating the acoustic noise map. One is based on modelling
alone. It uses knowledge of the sources of sound that are known to be present and makes use of
models for the acoustic output of those sources and for sound propagation in the ocean. Another
is based on measurement alone. It makes use of a network of acoustic sensors at a set of discrete
locations within the region of interest to record values of the sound produced by all sources (whether
their locations are known or not). Recently, however, there has been interest in an approach that uses a
combination of modelling and measurement [17–19]. In this paper consideration is given to how such
an approach might be implemented using a method based on compressive sensing. It is demonstrated
that the estimation of the acoustic noise map can be improved by aggregating appropriately measured
data provided by a sensor network with measurement models, and without the need to improve the
available hardware such as the individual sensors used for ocean sound monitoring.

The problem of estimating the acoustic noise map is divided into two steps. In the first step,
source reconstruction, the measured values provided by the acoustic sensors in the network together
with partial information about the sound sources are used to provide estimates of the source locations
and the source levels, which describe the acoustic output of the sources. This step is formulated as
a linear system of equations whose solution estimates the source level at each possible location of a
source within the region of interest. Since the number of possible source locations is very large, the
system of equations is highly underdetermined. However, the number of actual sources is known to
be small, and so the solution vector should be sparse. Thus, the problem is akin to one of compressive
sensing, and a sparsity-inducing algorithm can be used to obtain a solution. The second step, sound
prediction, uses the solution to the source reconstruction problem to provide estimates of the mean
squared sound pressure, which is related to acoustic intensity, at any location within the region of
interest. In terms of these estimates, aggregated measures of the sound field, such as the spatially
averaged sound pressure level, can be calculated.

To illustrate the methodology, a set of numerical simulation experiments is proposed and
used to compare the approach with those based on modelling alone and measurement alone. The
experiments are also used to quantify the uncertainties associated with estimates of the spatially
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averaged sound pressure level, and to investigate the influence of the design of the network of
sensors on the results obtained. It is shown that although the spatial resolution to which the
source reconstruction problem can be solved is generally limited, reliable estimates of the spatially
averaged sound pressure level can be obtained, and therefore the approach can provide support to
an implementation of the Marine Strategy Framework Directive.

The scenario chosen for the numerical simulation experiments is that of a sound field generated
by ships (the sources of sound) contained within a commercial shipping lane in shallow water with a
network of acoustic sensors located outside but adjacent to the shipping lane. A frequency interval of
40 Hz to 200 Hz has been chosen because this is the interval over which ship traffic noise is a dominant
factor in the measured ocean ambient noise spectra. The necessary inputs for the experiments in
terms of source levels and source locations are in general available for this scenario: estimates of
typical source levels for commercial ships may be obtained from data in the scientific literature ([20]
and Section 2.2), and the locations of the sources may be chosen based on data for realistic ship
traffic density that is available from the Automated Identification System (AIS). AIS is an automatic
tracking system used for identifying and locating ships by electronically exchanging data with other
nearby ships, AIS base stations and satellites. The system provides data for the location, heading
and speed of commercial ships of gross tonnage of 300 or more and all passenger ships regardless of
size. The availability of the above data enables the methodology described in this paper to be applied
in principle to real-world scenarios. Note that although the work described is restricted to the ship
traffic scenario, the method can in principle be extended to other sources for which data exists for
their locations and source acoustic output.

Solving the source reconstruction problem is generally incidental to the problem of monitoring
anthropogenic ocean sound. However, there are applications, for example, concerned with the use
of a passive network of acoustic sensors to identify and track sound sources, for which it is required
to solve the source reconstruction problem as accurately as possible. Approaches to doing so for
the static case, i.e., corresponding to a single time instant, are indicated, and in future work would
be based on exploiting the measurements provided by the sensor network at different times and
knowledge about how the locations of the sources evolve with time.

The paper is organised as follows. Section 2 gives the background, including models for the
acoustic output of the sound sources and for sound propagation in the ocean, information about
the sensors used for ocean sound monitoring, details of the numerical simulation experiments, and
descriptions of the different approaches to estimating the acoustic noise map. In Section 3 the
source reconstruction problem and how it is solved are described. Section 4 discusses the results
obtained from the numerical simulation experiments. Finally, Section 5 gives conclusions and ideas
for further work.

2. Background

2.1. Model for the Locations of the Sound Sources and Receivers

Although the ships and receivers could be located anywhere in the region of interest, here that
region is discretised into a grid containing M points with the locations of the (centroids of the) ships
and receivers restricted to the grid points. Suppose a shipping lane containing N of those grid points
forms a part of the region of interest, with nship ships (or sources) positioned within the shipping
lane and nrcvr receivers (or sensors) located outside the lane. Let the grid points within the region of
interest be indexed by i ∈ Igrid = {1, . . . , M}, and denote their locations by the position vectors ri.
Let the grid points in the shipping lane be indexed by j ∈ Ilane ⊆ Igrid, where Ilane has N elements,
and let the ships be located at grid points indexed by k ∈ Iship ⊆ Ilane, where Iship has nship elements.
Suppose Iship = Iship,k ∪ Iship,u, where Iship,k containing nship,k elements identifies those ships whose
locations are known (from AIS transponder information that provides GPS coordinates) and Iship,u



Sensors 2016, 16, 415 4 of 20

corresponds to those ships whose locations are unknown. Finally, let the receivers be located at grid
points indexed by ` ∈ Ircvr ⊆ Igrid, where Ircvr has nrcvr elements.

2.2. Models for the Acoustic Output of the Sound Sources and for Sound Propagation

The acoustic output of a continuous sound source such as a ship may be characterised in terms
of its radiated sound power. For a merchant ship at modest speed, the sound power radiated into
the water is typically less than 100 W [21]. However, in underwater acoustics, the acoustic output
of a source is historically characterised in terms of a source level, which is formulated in terms of
the product of the acoustic pressure and the distance from the source, and as the level of a quantity
it is expressed in decibels [22]. The source level may be related back to the sound power through
knowledge of the acoustic impedance of the medium (the product of the medium density and sound
speed) [21]. As a simplifying assumption, the sources are regarded as monopole point sources, where
the sound power is assumed to originate from a point in the medium (for a ship, this point is located
just below the water surface). Note that in acoustics, it is common to express quantities as levels using
decibels (dB). The level in decibels is ten times the logarithm to base 10 of the ratio of the quantity to a
reference value of that quantity, with the reference value stated. Expressed in decibels, a typical value
of source level for a ship at 50 Hz might be 180 dB re 1µPa2m2. (The units for source level used here
follow the more recent convention of expressing it as a product of sound pressure and distance, which
is dimensionally correct and compatible with SI units. The older and more commonly encountered
convention would state this source level as “180 dB re 1µPa at 1 m”.) The source level for a ship
varies with acoustic frequency and values for a typical commercial ship may be estimated from data
available in the scientific literature [20].

Figure 1. Model for the acoustic output of the sound sources evaluated at the centre frequencies of
third-octave bands in the interval from 40 Hz to 200 Hz .

The study by Wales and Heitmeyer [20] provided an estimate of the average source level of an
ensemble of 54 ships measured in transit. The resulting empirical source level spectrum has been
used here for noise mapping purposes and is shown in Figure 1. Wales and Heitmeyer reported a
dispersion of values in their measured data, with the ensemble standard deviation taking a value of
about 5 dB for frequencies below 150 Hz and about 3 dB for frequencies between 400 Hz and 1200 Hz.
Wales and Heitmeyer argued that their data showed negligible correlation between source level and
ship speed, length or displacement. However, it is known that the source level of individual ships
does depend on the speed and that the radiated noise from individual ships can show great variation
depending on mechanical and geometrical design parameters [23–26]. Ships also produce tonal
components from the engine and propulsion system, but these are not considered here. Instead, the
source spectrum is evaluated at the centre frequencies of third-octave bands in the frequency interval
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from 40 Hz to 200 Hz [27], and is plotted in Figure 1. This simplification is appropriate for noise
mapping for environmental impact assessment and is required in order to make the noise mapping
practical [19,28]. Note that the methodology used for the numerical simulation experiments described
here does not depend critically on the source model used, and a more sophisticated model may be
used once a consensus is achieved on the most accurate model (this may be tractable in the future
since AIS transponder data often contains information about the ship class, size and speed). For the
work described here, the source level (in dB re 1µPa2m2) of a ship located at grid point rk, k ∈ Iship,
is modelled as

Sk( f ) = 10 log10

(
sk

C( f )

)
, C( f ) =

f 3.594

(1 + ( f /340)2)
0.917 (1)

where f is frequency (in Hz), sk is a parameter representing the intercept of the source factor on the
ordinate axis (in µPa2m2), and C( f ) is a function representing the variation of the source factor with
frequency. Equation (1) is a mathematical representation of the empirical data provided by Wales
and Heitmeyer.

There are a number of factors that influence the propagation of sound in the ocean and contribute
to the propagation loss (the reduction in signal as sound propagates from source to receiver) [29].
Broadly, these include the following: the geometrical spreading of the sound away from the source,
absorption of the sound by the sea-water and the sea-bed, the interaction with the sea-surface
(reflection and scattering), the interaction with (and transmission through) the sea-bed, the refraction
of the sound due to the sound speed gradient, the bathymetry (water depth) between source and
receiver positions, and source and receiver depth. A number of the above factors depend on the
acoustic frequency, and a complex model will include frequency dependence explicitly within the
model parameters. In the work described here, the propagation of sound from the ship to a position
ri in the region of interest is described by a propagation loss function P( f , rk, ri), also a function of
frequency f , with the energy flux model of Weston [30,31] chosen for this purpose. The Weston
model is particularly suitable for a shallow water channel where sound speed in the water column
is assumed constant. The model calculates propagation loss in terms of energy loss using one of
four simple equations that describe different propagation loss regimes according to the distance from
the source and depending on the frequency and other environmental parameters in the underwater
channel. The four equations are:

P( f , rk, ri) = 10 log10 r2 (2)

P( f , rk, ri) = 10 log10
rhkhi

2hminφmin
(3)

P( f , rk, ri) = 10 log10
rhkhi
5.22

(
α
∫ r

0

dr
h3

)1/2
(4)

P( f , rk, ri) = 10 log10
rhkhi

λ
+

λ2α

8

∫ r

0

dr
h3 (5)

where r is the horizontal distance from the source at rk to the receiver at ri, h is the water depth at
horizontal distance r from the source, hk is the water depth at the source, hi is the water depth at
the receiver, hmin is the minimum water depth between the source and receiver, φmin is the critical
grazing angle, α is the attenuation (in dB/radian), and λ is the acoustic wavelength (that depends
on the sound speed in water and frequency). The equations are applied to different propagation
regimes moving away from the source, with Equation (2) used for spherical spreading at close range,
Equation (3) for cylindrical spreading, Equation (4) for the mode stripping region, and Equation (5)
for the single mode region. The environmental parameters include the bathymetry of the sea-bed,
characteristics of the sea-bed such as its density and sound attenuation, the speed of sound both
in water and in the sea-bed, and wind speed that governs the sea surface roughness. For this
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work, the following values of environmental parameters were chosen: the sound speed in water
as 1490 m·s−1, the water depth as 30 m, the windspeed as 0 m·s−1, the sound speed in the sea-bed as
1816 m·s−1, the density of the sea-bed as 2.03 g·cm−3, and the attenuation in the sea-bed (assumed
to be made of coarse sand) as 0.8 dB/wavelength. Note that the energy flux model is appropriate for
the shallow water scenario considered here and has the benefit of range-dependence and being fast to
compute. However, the methodology used for the numerical simulation experiments described does
not depend critically on the propagation model used, and a different model may be used should the
scenario require it (e.g., for deeper water).

It follows that the mean squared sound pressure (in µPa2) at any position ri in the region of
interest due to all the ships is

s( f , ri) = ∑
k∈Iship

10[Sk( f )−P( f ,rk ,ri)]/10 (6)

In particular, the mean squared sound pressure at a receiver located at grid point r` is s( f , r`),
and the receiver provides a measurement of that value, which is denoted by y( f , r`). Furthermore,
the spatially averaged sound pressure level (in dB re 1µPa2m2) is

Lp( f ) = 10 log10

 1
AROI

∑
i∈Igrid

s( f , ri)

 (7)

where AROI is the area of the region of interest. For the purposes of monitoring ocean sound, the
spatially averaged sound pressure level Lp( f ) defined by Equation (7) provides a measure of the
total sound within the region of interest arising from the ships within the shipping lane.

2.3. Sensors for Ocean Sound Monitoring

An acoustic sensor used to measure ocean sound consists of several components: (i) a
hydrophone, (ii) electronics that amplify and digitize the electrical signal produced by the
hydrophone; and (iii) data storage systems used to record and store the data. The hydrophone is
an electroacoustic transducer that produces an electrical signal in response to the sound pressure in
the medium (essentially working like an underwater microphone). Typically, a hydrophone sensor
element is piezoelectric in design, with a sensitivity expressed in V·Pa−1. Usually, the hydrophone
signal requires amplification and electrical impedance buffering to drive any cable attached to the
sensor without signal loss, and electronic filters are applied to the signals (a low pass filter provides an
anti-aliasing function and, if needed, a high-pass filter is used to remove very low frequency artefacts
in the signal such as flow noise). The signal is digitized using an analogue to digital converter with
sampling rates typically being 44 kHz (although some systems offer sampling rates of hundreds of
kilohertz), and with resolution typically of 16 or 24 bit. The data may be transmitted to shore via a
fixed cabled link or via radio or satellite links but, more commonly, the data is stored on flash memory
drives located with the hydrophone and electronics in an autonomous recorder system. The whole
system requires traceable calibration, which may be achieved with an uncertainty of typically 10 %
(expressed as an expanded uncertainty for a coverage probability of 95 %).

The key performance characteristics of the recorder system are (i) the self-noise that limits the
capability of the system to measure low amplitude signals, (ii) the dynamic range that limits the
ability to measure high amplitude signals faithfully; and (iii) the overall system sensitivity. For an
application such as monitoring the sound from vessels in a shipping lane, it is quite feasible to choose
appropriate values of the above parameters to achieve good quality data without undue distortion.
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2.4. Numerical Simulation Experiments

For the numerical simulation experiments considered here, the region of interest is a square of
size 50 km × 50 km and is discretised into a square grid containing M = 501× 501 points with each
grid square of size 100 m× 100 m. A shipping lane of size 50 km× 2 km containing N = 501× 21
points forms a central band parallel to the sides of the region of interest. The (true) values sk defining
the sound generated by the ships are simulated as

sk = snom(1 + ε) (8)

where snom = 10230/10 µPa2m2 is a nominal value for sk, and ε is a random draw from the normal
distribution with mean zero and standard deviation 30 %, and the distribution is truncated to ensure
sk > 0. The sea-bed is assumed to be homogenous and to be flat, which means that the propagation
loss function only depends on the distance rki between rk and ri, i.e., P( f , rk, ri) = P( f , rki). The value
provided by a receiver is simulated as

y( f , r`) = s( f , r`)(1 + δ) (9)

where δ is a random draw from the normal distribution with mean zero and standard deviation
σrel = 10 %, the relative standard measurement uncertainty for the receivers, and the distribution
is truncated to ensure y( f , r`) > 0. The measured values are provided at nfreq = 8 frequencies fm,
namely 40, 50, 63, 80, 100, 125, 160 and 200 Hz, which are the centre frequencies of third-octave bands,
using nrcvr = 10 receivers arranged so that there are five receivers on either side of, and oustide,
the shipping lane. The value of σrel is chosen conservatively in order to investigate what might be
achieved using a relatively small network of relatively poor sensors.

Four numerical simulation experiments (labelled A to D) are considered. In all experiments,
there are nship = 50 ships, and the experiments differ in the number nship,k of ships whose locations
are assumed to be known and the furthest distance dmax of a receiver from the shipping lane
as follows:

A: nship,k = 40 and dmax ≤ 1 km;
B: nship,k = 25 and dmax ≤ 1 km;
C: nship,k = 40 and dmax ≤ 24 km;
D: nship,k = 25 and dmax ≤ 24 km.

Figure 2. Distributions of ships (blue circles) and receivers (red crosses) within the region of interest
for numerical simulation experiments A and B (Left) and C and D (Right).
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Figure 2 illustrates the distributions of ships (within the central shipping lane) and receivers
(outside the lane) for the different numerical simulation experiments. In each graph the central two
red broken lines define the shipping lane. Additionally, there are red broken lines either side of
the shipping lane that define bands in which the receivers are placed: narrow bands for numerical
simulation experiments A and B and wider bands for experiments C and D. In the graph on the
right the outer limits of these bands, being coincident with the top and bottom edges of the region of
interest, are not too clear.

2.5. Approaches to Estimating Ocean Sound

2.5.1. Based on Modelling

One approach to estimating the acoustic noise map makes no use of the measured values
provided by the receivers. Instead it uses approximate knowledge of the parameters sk for those
ships that are known to be in the region of interest and a model for sound propagation. For example,
the parameters sk for the ships located at grid points rk, k ∈ Iship,k, are all assigned to be the nominal
value snom, and an estimate ŝ( f , ri) of the mean squared sound pressure at each point ri, i ∈ Igrid,
due to those ships is calculated using Equations (1) and (6) with the summation taken over indices
k ∈ Iship,k, i.e.,

ŝ( f , ri) = ∑
k∈Iship,k

10[Sk( f )−P( f ,rk ,ri)]/10, Sk( f ) = 10 log10

(
snom

C( f )

)
(10)

Equation (7) is then used to calculate an estimate of the spatially averaged sound pressure
level Lp( f ) in terms of the estimates ŝ( f , ri). By applying the approach a number of times to
obtain different values of Lp( f ) corresponding to different values of the parameters sk for the ships
simulated according to the statistical model in Equation (8), the influence on the estimate of Lp( f )
of uncertainty associated with knowledge about the parameters sk can be assessed. This assessment
involves comparing the average of the values of Lp( f ) with the true value of Lp( f ) to measure the
bias of the estimate, and evaluating the standard deviation of the values to measure the precision of
the estimate. The approach is described as the modelling approach.

2.5.2. Based on Measurement

Another approach makes use only of the measured values provided by the receivers. An estimate
of the mean squared sound pressure at each point ri, i ∈ Igrid, in the region of interest is given by the
average of the measured values y( f , r`), i.e.,

ŝ( f , ri) =
nrcvr

∑
`=1

y( f , r`) (11)

Again, Equation (7) is then used to calculate an estimate of the spatially averaged sound pressure
level Lp( f ) in terms of these estimates. By applying the approach a number of times to obtain
different values of Lp( f ) corresponding to different measured values provided by the receivers
simulated according to the statistical model in Equation (9), the influence on the estimate of Lp( f )
of uncertainty associated with the receiver measurements can be assessed. The approach is described
as the measurement approach.

2.5.3. Based on Modelling and Measurement

The approach proposed here is based on combining the knowledge about how sound propagates
in the ocean with measurements of the sound made at (a small number of) discrete locations within
the region of interest using a network of acoustic sensors. As described in Section 1, in a first step,
the approach addresses the source reconstruction problem that involves providing estimates Îship and
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ŝk, k ∈ Îship of, respectively, the locations and parameters sk for all the ships within the shipping
lane (both those identified by indices in Iship,k for which there is information about their locations
and parameters sk and those corresponding to unknown indices in Iship,u for which there is no such
information). An approach to solving the source reconstruction problem is presented in Section 3.
Then, in a second step, the approach addresses the sound prediction problem in which the solution to
the source reconstruction problem is used to evaluate the mean squared sound pressure at each point
ri, i ∈ Igrid in the region of interest, i.e.,

ŝ( f , ri) = ∑
k∈ Îship

10[Ŝk( f )−P( f ,rk ,ri)]/10, Ŝk( f ) = 10 log10

(
ŝk

C( f )

)
(12)

Again, Equation (7) is then used to calculate an estimate of the spatially averaged sound pressure
level Lp( f ) in terms of these estimates. By applying the approach a number of times to obtain different
values of Lp( f ) corresponding to different measured values provided by the receivers simulated
according to the statistical model in Equation (9), the influence on the estimate of Lp( f ) of uncertainty
associated with the receiver measurements can be assessed. The approach is described as the modelling
and measurement approach.

3. Source Reconstruction

Let s denote the vector of parameters sk at all grid points rj, j ∈ Ilane, within the shipping lane.
Two types of information are available about the vector s. The first type is the measured values
y( fm, r`), m = 1, . . . , nfreq, ` ∈ Ircvr, provided by the receivers. This information is represented by the
linear equations

As = y (13)

in which the matrix A, of dimension nfreqnrcvr × N, contains terms that depend on values of the
propagation loss function P( fm, rj`) and the function C( fm), and the vector y contains the values
y( fm, r`). The second type is the estimate snom of sk, k ∈ Iship,k, for those ships whose locations are
known. This information is represented by the linear equations

Bs = snom1nship,k (14)

in which the matrix B, of dimension nship,k×N, has a single value of unity in each row corresponding
to an index of Iship,k, and 1nship,k is a vector of ones of dimension nship,k × 1.

The two types of information are represented together by the linear equations

Φs = z (15)

where

Φ =

[
D−1A
E−1B

]
, z =

[
D−1y

E−1snom1nship,k

]
(16)

and the matrices D and E provide a weighting of the data, and are assigned to be diagonal
matrices with diagonal elements equal to the standard uncertainties associated with the elements
of, respectively, the vectors y and snom1nship,k .

Since the number nfreqnrcvr + nship,k of equations is very much smaller than the number N
of unknowns, the Equations (15) are underdetermined, and do not possess a unique solution. (In
the case of the numerical simulation experiments, nfreq = 8, nrcvr = 10, nship,k = 40 or 25, and
N = 501× 21 = 10, 521.) However, the knowledge that the solution is sparse, i.e., that most of the
elements of s are zero, can be used to provide a particular solution. This solution is defined by the
vector s̃ that solves

min
s̃

τ‖s̃‖1 +
1
2
‖Φ̃s̃− z̃‖2

2, s̃ ≥ 0 (17)
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where Φ̃ is obtained from Φ by scaling each of its columns to have a 2-norm of one, z̃ is similarly
obtained by scaling z to have a 2-norm of one, and s is recovered from s̃ using

sj = ‖z‖2
s̃j

‖Φ·,j||2
, j = 1, . . . , N (18)

in which Φ·,j denotes the jth column of Φ. In Equation (17), ‖x‖2
2 is the sum of the squares of the

elements of x (the square of the vector 2-norm), and ‖x‖1 is the sum of the absolute values of the
elements of x (the vector 1-norm). The formulation of Equation (17) in terms of Φ̃ and z̃ corresponds
to a re-parametrisation of the Equations (15) that ensures that the problem is sensibly scaled. The
scalar τ is used to adjust the balance between satisfying the Equations (15), which represent the two
types of information, and achieving sparsity of the solution, which is represented by the term ‖s̃‖1.
The sensitivity of the solution to the choice of the value of τ is investigated in Section 4.

Minimisation problems of the form of Equation (17) arise in applications of compressive
sensing [32], and a number of algorithms are available for solving such problems. In this work the
approach and software described in [33,34] employing a homotopy-based algorithm is used. The
approach allows for the inclusion of non-negativity constraints on the solution, which express the
knowledge that the ships are sources (and not sinks) of sound.

However, solving Equation (17) gives estimates of the parameters sk for the known ships that
are biased in the sense that those parameters sk are consistently underestimated. This property is a
common feature when minimising a vector 1-norm to induce sparsity [35], as homotopy does, and
the inclusion of a de-biasing step helps to improve the quality of the estimates. Let Îship contain the
indices of the non-zero elements in the solution to Equation (17), which provides an estimate of the
set of indices Iship that identify the locations of the complete set of ships. The de-biasing step involves
solving the non-negative linear least-squares problem

min
s̃ Îship

1
2
‖Φ̃ Îship

s̃ Îship
− z̃‖2

2, s̃ Îship
≥ 0 (19)

where s̃ Îship
and Φ̃ Îship

contain, respectively, the elements of s̃ and the columns of Φ̃ identified by the

indices Îship. In other words, Equation (17) involving the vector 1-norm is used only to obtain the
index set Îship that estimates the locations of the ships, and Equation (19) involving only the vector
2-norm is then solved to obtain estimates of the parameters sk for those ships. The impact of the
be-biasing step is illustrated in Section 4.

4. Results and Discussion

4.1. Source Reconstruction

Figure 3 illustrates the solution to the source reconstruction problem for one instance of
numerical simulation experiment A and how it compares with the true solution used as the basis
of the simulation. The top graph shows the true values (as black dots) and estimated values (as red
circles) of the parameters sk plotted against, respectively, the index sets Iship and Îship. The bottom
graph shows the true locations of the known ships within the shipping lane (as black dots), the true
locations of the unknown ships (as red dots) and the estimated locations of all the ships (as blue
circles). (Note the different scales on the horizontal and vertical axes, since in reality the shipping
lane is long and thin with an aspect ratio of 50 km to 2 km, which exagerates distances in the vertical
direction compared with distances in the horizontal direction.) In this case the estimated number of
ships is 44.
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Figure 3. For numerical simulation experiment A, the solution to the source reconstruction problem:
(Top) the true values (black dots) and estimated values (red circles) of the parameters sk; (Bottom) the
true locations within the shipping lane of the known ships (black dots) and unknown ships (red dots)
and the estimated locations of the ships (blue circles).

The source reconstruction problem is not solved particularly well. Most estimates of the
parameters sk have values close to the nominal value snom with a few taking quite large values.
Whereas most of the known ships are correctly located (where a black dot coincides with a blue circle
in the bottom graph), not one of the unknown ships is correctly located. In fact, the reconstruction
encourages the estimation of a group of unknown ships close to each other by a single ship with a
large value for its parameter sk. Note that the information about the locations and parameters sk for
the known ships is incorporated in the form of a set of observations that strongly encourages sources
at the known locations. However, the known locations are not imposed as hard constraints, and so
there is no guarantee that all the known locations will be identified correctly.

Indeed, the fact that the source reconstruction problem is not solved particularly well is
unsurprising. It can be shown [36] that if Φ̃ is a matrix of dimension n× N of normally-distributed
values, recovery of a solution comprising κ non-zero components would require

n > 2κ log
(

N
n

)
(20)

In this ideal case, and taking n = nfreqnrcvr + nship,k = 120 and N = 10, 521, recovery is possible
only for κ < 14, which is much smaller even than the number of known ships. Moreover, for a
matrix Φ̃ of this particular form, the correlation associated with the estimates of any two components
of s̃ is expected to be weak. In terms of the source reconstruction problem, such a situation would
correspond to being able to distinguish the locations of the ships very well. However, as mentioned
above, groups of unknown ships close to each other are estimated by a single ship (with a large value
for its parameter sk), which suggests some of the correlations are strong.
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Figure 4. For numerical simulation experiment A, the solution to the source reconstruction problem:
(Top) the coherence of a known ship, and (Bottom) the coherence of an unknown ship, with all other
possible sound sources within the shipping lane.

To examine the strength of the correlation between pairs of estimates of the parameters sk
corresponding to different locations, define the coherence matrix C by

C = Φ̃>Φ̃ (21)

The ith row (or column) of C describes the coherence (or correlation) of a sound source at a
location in the shipping lane specified by the index i with sound sources at every other location in
the shipping lane. Figure 4 shows the coherence information as contour plots for two choices of
index i. In the top graph the index i corresponds to a known ship whose location has been identified
correctly, and the coherence decays rapidly from the location of the ship (shown by the black dot and
enclosing circle). In contrast, in the bottom graph the index i corresponds to an unknown ship whose
location has not been identified, and the coherence decays much more slowly from the location of the
ship (shown by the red dot and enclosing circle) and not at all across the shipping lane. There are a
number of sound sources that are highly correlated with the ship and that, consequently, are difficult
to recover separately.

Figures 5 and 6 illustrate the same information as in Figures 3 and 4 but for one instance of
numerical simulation experiment C where the receivers are more widely spread and located further
away from the shipping lane than for experiment A. The results are qualitatively very similar, except
that the coherence functions decay somewhat slower. It follows that there is a spatial resolution to
which a sound source can be identified. Moreover, that spatial resolution is itself spatially dependent
(because it is different for the two choices of index i) and it depends on the information about the
sound sources (how many ships have known locations) and on the design of the network of receivers.
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Figure 5. For numerical simulation experiment C, the solution to the source reconstruction problem:
(Top) the true values (black dots) and estimated values (red circles) of the parameters sk; (Bottom) the
true locations within the shipping lane of the known ships (black dots) and unknown ships (red dots)
and the estimated locations of the ships (blue circles).

Figure 6. For numerical simulation experiment C, the solution to the source reconstruction problem:
(Top) the coherence of a known ship, and (Bottom) the coherence of an unknown ship, with all other
possible sound sources within the shipping lane.



Sensors 2016, 16, 415 14 of 20

4.2. Sound Prediction

Figure 7 illustrates the solution to the sound prediction problem for one instance of numerical
simulation experiment A and how it compares with the true solution used as the basis of the
simulaton. The graphs on the left show the true acoustic noise maps for the region of interest and
the frequencies of 63 Hz and 125 Hz. The graphs on the right show the corresponding estimates of
the noise maps obtained using the modelling and measurement approach. The sound sources are
clearly evident, and also that their influence is largely restricted to the shipping lane, which is a result
of the nature of the propagation loss function that decays rapidly with distance. The differences
between the top and bottom graphs illustrate the frequency dependence of both the source levels of
the ships and the sound propagation. Figure 8 illustrates the detail of the acoustic noise maps within
the shipping lane for the single frequency of 63 Hz. The graphs correspond to the true noise map
(top) and the estimates obtained on the basis of the modelling approach (middle) and modelling and
measurement approach (bottom). Results for the measurement approach are not shown because the
noise map is constant over the region of interest in this case. (In these graphs the ships do not appear
as circles, which is a result of the difference in scales in the horizontal and vertical directions.) It is
seen in the middle graph that there are parts of the region of interest, e.g., the vertical strip between
grid points 100 and 200 in the horizontal direction, where the values of the acoustic noise map are
underestimated, which correspond to ships that are missing because they are unknown. It is seen in
the bottom graph that the modelling and measurement approach has gone some way to improve the
estimation in those parts by using the measured data provided by the sensor networks to reconstruct
those unknown ships. However, in other parts of the region of interest, the acoustic noise map is
overestimated, where a single reconstructed ship has a large source level.

Figure 7. For numerical simulation experiment A, the true acoustic noise map for frequencies 63 Hz
(Top-Left) and 125 Hz (Bottom-Left), and the corresponding estimates of the noise map (Top-Right
and Bottom-Right) obtained using the analysis approach based on modelling and measurement.
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Figure 8. For numerical simulation experiment A, detail of the acoustic noise maps within the
shipping lane for the frequency 63 Hz: true noise map (Top), and corresponding estimates obtained
using the analysis approach based on modelling (Middle) and modelling and measurement (Bottom).

Table 1 summarises the estimates of spatially averaged sound pressure level Lp( f ) provided
by the analysis approaches based on modelling, measurement and a combination of modelling and
measurement for two of the considered frequencies. For each numerical simulation experiment, the
approaches are applied to one hundred instances of simulated data, and the average µ[Lp( f )] and
standard deviation σ[Lp( f )] of the values obtained are calculated. In the table are given the true
value L∗p( f ), the difference δ = µ[Lp( f )]− L∗p( f ) and the standard deviation σ = σ[Lp( f )].

The results presented in the table indicate that the estimate of Lp( f ) provided by the modelling
approach is adversely affected by reducing the number nship,k of ships whose locations are known
(compare the results for numerical simulation experiments A and C with those for experiments B
and D), whereas the estimate provided by the measurement approach is adversely affected by
moving the receivers away from the shipping lane (compare the results for numerical simulation
experiments A and B with those for experiments C and D). In contrast, the approach based on both
modelling and measurement gives results that are in comparison insensitive to the value of nship,k and
to the locations of the receivers. Furthermore, the combination of modelling and measurement gives
estimates that are better than those provided by the other approaches, in terms of their closeness of
agreement with the true spatially averaged sound pressure level and the dispersions of results. Only
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in the case of numerical simulation experiment A does the approach based on both modelling and
measurement give results for which the difference between average and true values is large compared
to the standard deviation of the values.

Table 1. For the four numerical simulation experiments and two frequencies f (in Hz), estimates (in
dB re 1µPa2m2) of the spatially averaged sound pressure level Lp( f ) obtained using the analysis
approaches based on modelling (Mod.), measurement (Meas.) and modelling and measurement
(compressive sensing, CS). Listed are the true value L∗p( f ), the difference δ = µ[Lp( f )]− L∗p( f ) and
the standard deviation σ = σ[Lp( f )], where µ[Lp( f )] and σ[Lp( f )] are the average and standard
deviation, respectively, of the values obtained by applying the approaches to one hundered instances
of simulated data.

A B C D
nship,k = 40 nship,k = 25 nship,k = 40 nship,k = 25
dmax ≤ 1 km dmax ≤ 1 km dmax ≤ 24 km dmax ≤ 24 km

f L∗
p( f ) δ σ δ σ δ σ δ σ

63 182.73 Mod. −1.01 0.20 −3.03 0.24 −1.01 0.20 −3.03 0.24
Meas. −3.73 0.16 −3.74 0.17 −10.51 0.23 −10.55 0.24
CS 0.41 0.13 0.25 0.16 −0.03 0.09 −0.04 0.08

125 172.68 Mod. −1.00 0.20 −3.02 0.24 −1.00 0.20 −3.02 0.24
Meas. −2.12 0.17 −2.12 0.16 −7.97 0.21 −7.98 0.22
CS 0.41 0.13 0.25 0.16 −0.03 0.09 −0.03 0.08

4.3. Sensitivity to the Choice of τ

Recall that the parameter τ in Equation (17) controls the balance between satisfying
Equations (15) and achieving sparsity of the solution. The default value recommended for the
software used to solve Equation (17) [33] is

τ = ρ2√log N (22)

where ρ is the standard deviation of the errors in the observed data comprising z̃. Since the evaluation
of z̃ involves a weighting of the observed data (by the inverse standard uncertainties associated the
data) and a scaling (by the 2-norm of z), the default value is

τ =

√
log N
‖z‖2

(23)

Figure 9 shows the influence of the choice of the parameter τ on the results obtained for one
instance of numerical simulation experiment A and compares the results without and with the
de-biasing step. The graphs show the dependence on τ of the least-squares error ‖Φ̃s̃ − z̃‖2

2, the
estimated number of ships, and the absolute errors in the predicted values of spatially averaged
sound pressure level for two of the considered frequencies.

As τ is decreased more emphasis is given to solving (weighted versions of) Equations (13)
and (14) rather than to the sparsity of the solution, so that the least-squares error decreases but the
estimated number of ships increases. Note that the estimated number of ships after the de-biasing
step is smaller than the estimated number before the step because the non-negativity constraints in
Equation (19) increases the sparsity of the solution. As τ is increased more emphasis is given to the
sparsity of the solution and when the estimated number of ships falls below nship,k the least-squares
error rapidly increases because Equation (14) containing information about the known ships cannot
be satisfied.
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Figure 9. For numerical simulation experiment A, the sensitivity of results to the choice of τ:
(Top-Left) value of the least-squares error ‖Φ̃s̃ − z̃‖2

2; (Top-Right) estimated number of ships;
(Bottom-Left) absolute error (in dB) for the predicted values of T( f = 63 Hz) and (Bottom-Right) for
T( f = 125 Hz). The blue broken lines and red solid lines show results for the solutions, respectively,
before and after the de-biasing step.

Figure 10 illustrates the same information as in Figure 9 but for one instance of numerical
simulation experiment C. The results are qualitatively very similar, but the improvement in the
estimates of Lp( f ) obtained from the de-biasing step are very evident. The value used for τ to
generate the results in Sections 4.1 and 4.2 is marked on the graphs as a vertical broken line. In both
figures, the value is in an interval of values for τ within which the results are generally insensitive
to the choice of τ. Consequently, for the two strategies for locating the receivers employed in the
numerical simulation experiments, the recommended value for τ would appear to be appropriate.
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Figure 10. For numerical simulation experiment C, the sensitivity of results to the choice of τ:
(Top-Left) value of the least-squares error ‖Φ̃s̃ − z̃‖2

2; (Top-Right) estimated number of ships;
(Bottom-Left) absolute error (in dB) for the predicted values of T( f = 63 Hz) and (Bottom-Right) for
T( f = 125 Hz). The blue broken lines and red solid lines show results for the solutions, respectively,
before and after the de-biasing step.

5. Conclusions and Future Work

An approach has been described that uses measurements of ocean sound provided by a network
of acoustic sensors, partial information about the locations and sound levels of the sources of the
sound, and models of the acoustic output of the sources and for sound propagation in the ocean, to
estimate the sound field produced by the sources anywhere within a region of interest. Aggregated
measures of the sound field, such as the spatially averaged sound pressure level, can then be
calculated. The approach involves a source reconstruction step, which uses a compressive sensing
algorithm to exploit the sparsity of the representation of the sound field in terms of the sources,
and a sound prediction step. A set of numerical simulation experiments has been used to compare
the results obtained using the approach with those provided by other approaches, such as based on
modelling alone and measurement alone, as well as to investigate the influence of the design of the
sensor network on the results. Although the spatial resolution to which the source reconstruction
problem can be solved is generally limited, reliable estimates of aggregated measures of the sound
field can be obtained compared to those provided by the other approaches.

The focus has been on the static problem, i.e., a problem relating to a single instant in time.
In practice, measurements of ocean sound are available from the sensor network for a sequence of
time instants, and there is also partial information about how the locations and sound levels of the
sources evolve in time, for example, from the AIS and assuming the sound levels remain constant.
There is interest in how aggregated measures of the sound field change with time to know whether
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there are temporal trends in those measures. Moreover, the increase in the volume of available data
can be expected to improve the accuracy to which the source reconstruction can be solved (which
becomes a source tracking problem in the dynamic case) and, consequently, the estimate of the sound
field (and its evolution in time). Future work will consider this dynamic problem, and there are
various possibilities to treat it including, for example, the overlapping group lasso algorithm [37] or
by combining the compressive sensing algorithm described with a Kalman filter algorithm.

Of course, sources other than ships, such as airgun sources used for geophysical surveying and
marine pile driving producing construction noise, will radiate in the frequency interval considered.
Some of these sources are intermittent, but since the noise mapping process is essentially one of
adding incoherent sound energy contributions, the contributions of these sources can be modelled
separately and added to form the overall noise map. The work described here was restricted to one
source (viz., ship traffic), but it may be extended to other sources assuming that a suitable model for
those sources exists.
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