Fri, 19 Jul 2019
12:00
L6

Mass, Kaehler Manifolds, and Symplectic Geometry

Prof Claude LeBrun
(Stonybrook)
Abstract

In the speaker's previous joint work with Hans-Joachim Hein, a mass formula for asymptotically locally Euclidean (ALE) Kaehler manifolds was proved, assuming only relatively weak fall-off conditions on the metric. However, the case of real dimension four presented technical difficulties that led us to require fall-off conditions in this special dimension that are stronger than the Chrusciel fall-off conditions that sufficed in higher dimensions. This talk will explain how a new proof of the 4-dimensional case, using ideas from symplectic geometry, shows that Chrusciel fall-off suffices to imply all our main results in any dimension. In particular, I will explain why our Penrose-type inequality for the mass of an asymptotically Euclidean Kaehler manifold always still holds, given only this very weak metric fall-off hypothesis.
 

Mon, 31 Jul 2017

12:00 - 13:15
L5

The Einstein-Maxwell Equations & Conformally Kaehler Geometry

Claude LeBrun
(Stonybrook)
Abstract


  Any constant-scalar-curvature Kaehler (cscK) metric on a complex surface may be viewed as a solution of the Einstein-Maxwell equations, and this allows one to produce solutions of these equations on any 4-manifold that arises as a compact complex surface with even first Betti number. However, not all solutions of the Einstein-Maxwell equations on such manifolds arise in this way. In this lecture, I will describe a construction of new compact examples that are Hermitian, but not Kaehler.
 

Tue, 19 Jul 2016

12:00 - 13:15
L5

Doubled Geometry and $\alpha'$ Corrections

Dr Olaf Hohm
(Stonybrook)
Abstract

I review work done in collaboration with Siegel and Zwiebach,  in which a doubled geometry is developed that provides a spacetime  action containing the standard gravity theory for graviton, Kalb-Ramond field and dilaton plus higher-derivative corrections. In this framework the T-duality O(d,d) invariance is manifest and exact to all orders in $\alpha'$.  This theory by itself does not correspond to a standard string theory, but it does encode the Green-Schwarz deformation characteristic of heterotic string theory  to first order in $\alpha'$ and a Riemann-cube correction to second order in  $\alpha'$. I outline how this theory may be extended to include arbitrary string theories. 

 

Wed, 22 Jul 2015
12:00
L5

Einstein Metrics, Harmonic Forms, and Symplectic Manifolds.

Claude LeBrun
(Stonybrook)
Abstract
Given a smooth compact 4-manifold M  which admits Einstein metrics, is its moduli space of Einstein metrics connected?  While the corresponding question in higher dimensions typically has a negative answer, there are interesting 4-manifolds M for which the answer is known to be affirmative. One important class of 4-manifolds for which we do not know the answer, however,  consists of the underlying 4-manifolds of the del Pezzo surfaces. In this lecture, I will explain a  result which provides interesting partial information concerning this case. 
Tue, 24 Feb 2015

12:00 - 13:00
L5

Curved-space supersymmetry and Omega-background for 2d N=(2,2) theories, localization and vortices.

Cyril Closset
(Stonybrook)
Abstract

I will present a systematic approach to two-dimensional N=(2,2) supersymmetric gauge theories in curved space, with a particular focus on the two-dimensional Omega deformation. I will explain how to compute Omega-deformed A-type topological correlation functions in purely field theoretic terms (i.e. without relying on a target-space picture), improving on previous techniques. The resulting general formula simplifies previous results in the Abelian (toric) case, while it leads to new results for non-Abelian GLSMs.

Subscribe to Stonybrook