Mon, 18 Feb 2019

17:00 - 18:00
L5

A Beautiful Game from the War: Piet Hein, John Nash, Martin Gardner and Hex

Ryan Hayward
(University of Alberta)
Abstract

Seeking income during World War II, Piet Hein created the game now called Hex, marketing it through the Danish newspaper Politiken.  The game was popular but disappeared in 1943 when Hein fled Denmark.

The game re-appeared in 1948 when John Nash introduced it to Princeton's game theory group, and became popular again in 1957 after Martin Gardner's column --- "Concerning the game of Hex, which may be played on the tiles of the bathroom floor" --- appeared in Scientific American.

I will survey the early history of Hex, highlighting the war's influence on Hein's design and marketing, Hein's mysterious puzzle-maker, and Nash's fascination with Hex's theoretical properties.

Fri, 09 Mar 2018

14:15 - 15:15
C3

Particles in Fluid Flows: How Microscopic Processes Impact Macroscopic Evolution

Bruce Sutherland
(University of Alberta)
Abstract

Through laboratory experiments, we examine the transport, settling and resuspension of sediments as well as the influence of floating particles upon damping wave motion.   Salt water is shown to enhance flocculation of clay and hence increase their settling rate.   In studies modelling sediment-bearing (hypopycnal) river plumes, experiments show that the particles that eventually settle through uniform-density fluid toward a sloping bottom form a turbidity current.  Meanwhile, even though the removal of particles should increase the buoyancy and hence speed of the surface current, in reality the surface current stops.  This reveals that the removal of fresh water carried by the viscous boundary layers surrounding the settling particles drains the current even when their concentration by volume is less than 5%. The microscopic effect of boundary layer transport by particles upon the large scale evolution is dramatically evident in the circumstance of a mesopycnal particle-bearing current that advances along the interface of a two-layer fluid.  As the fresh water rises and particles fall, the current itself stops and reverses direction.  As a final example, the periodic separation and consolidation of particles floating on a surface perturbed by surface waves is shown to damp faster than exponentially to attain a finite-time arrest as a result of efficiently damped flows through interstitial spaces between particles - a phenomenon that may be important for understanding the damping of surface waves by sea ice in the Arctic Ocean (and which is well-known to anyone drinking a pint with a proper head or a margarita with rocks or slush).

Thu, 26 May 2016

13:00 - 14:00
L4

Crystal, PBW, and canonical bases for quantized enveloping algebras

Gerald Cliff
(University of Alberta)
Abstract

Let U be the quantized enveloping algebra coming from a semi-simple finite dimensional complex Lie algebra. Lusztig has defined a canonical basis B for the minus part of U- of U. It has the remarkable property that one gets a basis of each highest-weight irreducible U-module V, with highest weight vector v, as the set of all bv which are not 0, as b varies in B. It is not known how to give the elements b explicitly, although there are algorithms.


For each reduced expression of the longest word in the Weyl group, Lusztig has defined a PBW basis P of U-, and for each b in B there is a unique p(b) in P such that b = p(b) + a linear combination of p' in P where the coefficients are in qZ[q]. This is much easier in the simply laced case. I show that the set of p(b)v, where b varies in B and bv is not 0, is a basis of V, and I can explicitly exhibit this basis in type A, and to some extent in types B, C, D.

It is known that B and P are crystal bases in the sense of Kashiwara. I will define Kashiwara operators, and briefly describe Kashiwara's approach to canonical bases, which he calls global bases. I show how one can calculate the Kashiwara operators acting on P, in types A, B, C, D, using tableaux of Kashiwara-Nakashima.

Tue, 19 Feb 2013

10:15 - 11:15
OCCAM Common Room (RI2.28)

Mathematical modelling with fully anisotropic diffusion

Thomas Hillen
(University of Alberta)
Abstract

***** PLEASE NOTE THIS SEMINAR WILL TAKE PLACE ON TUESDAY 19TH FEBRUARY *****

With "fully anisotropic" I describe diffusion models of the form u_t=\nabla \nabla (D(x) u), where the diffusion tensor appears inside both derivatives. This model arises naturally in the modeling of brain tumor spread and wolf movement and other applications. Since this model does not satisfy a maximum principle, it can lead to interesting spatial pattern formation, even in the linear case. I will present a detailed derivation of this model and discuss its application to brain tumors and wolf movement. Furthermore, I will present an example where, in the linear case, the solution blows-up in infinite time; a quite surprising result for a linear parabolic equation (joint work with K.J. Painter and M. Winkler).

Wed, 14 Sep 2011

10:15 - 11:15
OCCAM Common Room (RI2.28)

The Mathematics Behind Biological Invasion Processes

Mark Lewis
(University of Alberta)
Abstract

Models for invasions track the front of an expanding wave of population density. They take the form of parabolic partial differential equations and related integral formulations. These models can be used to address questions ranging from the rate of spread of introduced invaders and diseases to the ability of vegetation to shift in response to climate change.

In this talk I will focus on scientific questions that have led to new mathematics and on mathematics that have led to new biological insights. I will investigate the mathematical and empirical basis for multispecies invasions and for accelerating invasion waves.

Wed, 10 Nov 2010
10:10
OCCAM Common Room (RI2.28)

Cryoprotectant transport in cartilage

Janet Elliott
(University of Alberta)
Abstract

Cryopreservation (using temperatures down to that of liquid nitrogen at

–196 °C) is the only way to preserve viability and function of mammalian cells for research and transplantation and is integral to the quickly evolving field of regenerative medicine. To cryopreserve tissues, cryoprotective agents (CPAs) must be loaded into the tissue. The loading is critical because of the high concentrations required and the toxicity of the CPAs. Our mathematical model of CPA transport in cartilage describes multi-component, multi-directional, non-dilute transport coupled to mechanics of elastic porous media in a shrinking and swelling domain.

Parameters are obtained by fitting experimental data. We show that predictions agree with independent spatially and temporally resolved MRI experimental measurements. This research has contributed significantly to our interdisciplinary group’s ability to cryopreserve human articular cartilage.

Subscribe to University of Alberta