Tue, 14 Jun 2022

16:00 - 17:00
C1

Semifinite tracial ultraproducts

James Gabe
(University of Southern Denmark)
Abstract

One of the most important constructions in operator algebras is the tracial ultrapower for a tracial state on a C*-algebra. This tracial ultrapower is a finite von Neumann algebra, and it appears in seminal work of McDuff, Connes, and more recently by Matui-Sato and many others for studying the structure and classification of nuclear C*-algebras. I will talk about how to generalise this to unbounded traces (such as the standard trace on B(H)). Here the induced tracial ultrapower is not a finite von Neumann algebra, but its multiplier algebra is a semifinite von Neumann algebra.

Tue, 26 Oct 2021
12:00
Virtual

Asymptotic safety - a symmetry principle for quantum gravity and matter

Astrid Eichhorn
(University of Southern Denmark)
Abstract

I will introduce asymptotic safety, which is a quantum field theoretic
paradigm providing a predictive ultraviolet completion for quantum field
theories. I will show examples of asymptotically safe theories and then
discuss the search for asymptotically safe models that include quantum
gravity.
In particular, I will explain how asymptotic safety corresponds to a new
symmetry principle - quantum scale symmetry - that has a high predictive
power. In the examples I will discuss, asymptotic safety with gravity could
enable a first-principles calculation of Yukawa couplings, e.g., in the
quark sector of the Standard Model, as well as in dark matter models.

Thu, 08 Oct 2020

16:45 - 17:30
Virtual

Purely infinite C*-algebras and their classification

James Gabe
(University of Southern Denmark)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Cuntz introduced pure infiniteness for simple C*-algebras as a C*-algebraic analogue of type III von Neumann factors. Notable examples include the Calkin algebra B(H)/K(H), the Cuntz algebras O_n, simple Cuntz-Krieger algebras, and other C*-algebras you would encounter in the wild. The separable, nuclear ones were classified in celebrated work by Kirchberg and Phillips in the mid 90s. I will talk about these topics including the non-simple case if time permits.

Thu, 24 Sep 2020

16:45 - 17:30
Virtual

An introduction to compact quantum metric spaces

David Kyed
(University of Southern Denmark)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The Gelfand correspondence between compact Hausdorff spaces and unital C*-algebras justifies the slogan that C*-algebras are to be thought of as "non-commutative topological spaces", and Rieffel's theory of compact quantum metric spaces provides, in the same vein, a non-commutative counterpart to the theory of compact metric spaces. The aim of my talk is to introduce the basics of the theory and explain how the classical Gromov-Hausdorff distance between compact metric spaces can be generalized to the quantum setting. If time permits, I will touch upon some recent results obtained in joint work with Jens Kaad and Thomas Gotfredsen.

Tue, 25 Oct 2011

14:30 - 15:30
L3

The board game Hex – history, results, problems

Bjarne Toft
(University of Southern Denmark)
Abstract

Hex was discovered independently by Piet Hein in Copenhagen in 1942 and byJohn Nash in Princeton in 1948.  The game is interesting because its rules are very simple, yet it is not known how to play best possible.  For example, a winning first move for the first player (who does have  a winning strategy) is still unknown. The talk will tell the history of the game and give simple proofs for basic results about it. Also the reverse game of HEX,sometimes called REX, will be discussed. New results about REX are under publication in Discrete Mathematics in a paper:  How to play Reverse Hex (joint work with Ryan Hayward and Phillip Henderson).

Subscribe to University of Southern Denmark