Thu, 04 Jul 2019

14:00 - 15:30
C3

Mean flow instability of surface gravity waves propagating in a rotating frame: the Ekman-Stokes instability

Dr. Kannabiran Seshasayanan
(CEA Paris-Saclay)
Abstract

We study the stability properties of the Eulerian mean flow generated by monochromatic surface-gravity waves propagating in a rotating frame. The wave averaged equations, also known as the Craik-Leibovich equations, govern the evolution of the mean flow. For propagating waves in a rotating frame these equations admit a steady depth-dependent base flow sometimes called the Ekman-Stokes spiral, because of its resemblance to the standard Ekman spiral. This base flow profile is controlled by two non-dimensional numbers, the Ekman number Ek and the Rossby number Ro. We show that this steady laminar velocity profile is linearly unstable above a critical Rossby number Roc(Ek). We determine the threshold Rossby number as a function of Ek using a numerical eigenvalue solver, before confirming the numerical results through asymptotic expansions in the large/low Ek limit. These were also confirmed by nonlinear simulations of the Craik-Leibovich equations. When the system is well above the linear instability threshold, Ro >> Roc, the resulting flow fluctuates chaotically. We will discuss the possible implications in an oceanographic context, as well as for laboratory experiments.

Subscribe to CEA Paris-Saclay