Forthcoming events in this series


Fri, 19 Nov 2021

16:00 - 17:00
L1

Mathematigals

(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

How can we make maths more accessible, promote its many applications, and encourage more women to enter the field? These are the questions we aim to address with Mathematigals.

Caoimhe Rooney and Jessica Williams met in 2015 at the start of their PhDs in mathematics in Oxford, and in 2020, they co-founded Mathematigals. Mathematigals is an online platform producing content to demonstrate fun mathematical curiosities, showcase ways maths can be used in real life, and promote female mathematicians. Mathematigals primarily produces animated videos that present maths in a way that is engaging to the general public.

In this session, Jess and Caoimhe will talk about their initial motivation to begin Mathematigals, demonstrate the process behind their content creation, and describe their future visions for the platform. The session will end with an opportunity for the audience to provide feedback or ideas to help Mathematigals on their journey to encourage future mathematicians.

 

Fri, 12 Nov 2021

16:00 - 17:00
L1

North Meets South

Anna Parlak and Gill Grindstaff
(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

Fri, 29 Oct 2021

16:00 - 17:00
L1

Applying for academic jobs

Edwina Yeo and Jay Swar
(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

Fri, 22 Oct 2021

16:00 - 17:00
L1

What does a DPhil in Oxford look like?

Brian Tyrrell, Naya Yerolemou and Alice Kerr
(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

Fri, 18 Jun 2021

16:00 - 17:00
Virtual

Ethics and responsible innovation - what is it and how does it affect our research in mathematics?

Helena Webb
(University of Oxford)
Abstract

How aware should we be of letting AI make decisions on prison sentences? Or what is our responsibility in ensuring that mathematics does not predict another global stock crash?

In this talk, Helena will outline how we can view ethics and responsibility as central to processes of innovation and describe her experiences applying this perspective to teaching in the Department of Computer Science. There will be a chance to open up discussion about how this same approach can be applied in other Departments here in Oxford.

Helena is an interdisciplinary researcher working in the Department of Computer Science. She works on projects that involve examining the social impacts of computer-based innovations and identifying the ways in which these innovations can better meet societal needs and empower users. Helena is very passionate about the need to embed ethics and responsibility into processes of learning and research in order to foster technologies for the social good.

Fri, 11 Jun 2021

16:00 - 17:00
Virtual

North Meets South

Jaclyn Lang and Jan Sbierski
(University of Oxford)
Abstract

Jaclyn Lang
Explicit Class Field Theory
Class field theory was a major achievement in number theory
about a century ago that presaged many deep connections in mathematics
that today are known as the Langlands Program.  Class field theory
associates to each number field an special extension field, called the
Hilbert class field, whose ring of integers satisfies unique
factorization, mimicking the arithmetic in the usual integers.  While
the existence of this field is always guaranteed, it is a difficult
problem to find explicit generators for the Hilbert class field in
general.  The theory of complex multiplication of elliptic curves is
essentially the only setting where there is an explicit version of class
field theory.  We will briefly introduce class field theory, highlight
what is known in the theory of complex multiplication, and end with an
example for the field given by a fifth root of 19.  There will be many
examples!

 

Jan Sbierski
The strength of singularities in general relativity
One of the many curious features of Einstein’s theory of general relativity is that the theory predicts its own breakdown at so-called gravitational singularities. The gravitational field in general relativity is modelled by a Lorentzian manifold — and thus a gravitational singularity is signalled by the geometry of the Lorentzian manifold becoming singular. In this talk I will first review the classical definition of a gravitational singularity along with a classification of their strengths. I will conclude with outlining newly developed techniques which capture the singularity at the level of the connection of Lorentzian manifolds.

 

 

Fri, 28 May 2021

16:00 - 17:00
Virtual

North Meets South

Clemens Koppensteiner and David Gómez-Castro
(University of Oxford)
Abstract

Clemens Koppensteiner
Categorifying Heisenberg algebras

Categorification replaces set-theoretic structures with category-theoretic analogues. We discuss what this means and why it is useful. We then discuss recent work on categorifying Heisenberg algebras and their Fock space representations. In particular this gives a satisfying answer to an observation about equivariant K-theory made by Ian Grojnowski in 1996.

 

Aggregation-Diffusion Equations
David Gómez-Castro

The aim of this talk is to discuss an evolution problem modelling particles systems exhibiting aggregation and diffusion phenomena, and we will focus mostly on the so-called Aggregation-Diffusion Equation: ∂ρ ∂t = ∇ · (ρ ∇(U′ (ρ) + V + W ∗ ρ)) (ADE)

First, we will discuss the modelling. The famous case U′ (ρ) = log ρ and W = 0 is the famous Heat Equation. In the classical literature, the term U′(ρ) is typically deduced from Darcy’s law and models an internal energy of the system. We will show through particle systems how the term V models a confinement energy and W ∗ ρ an aggregation energy. The complete model covers many famous examples from different disciplines: Porous Media, Fokker-Plank, Keller-Segel and others. After this modelling, we discuss the mathematical treatment of (ADE). As in the case of the Heat Equation, the diffusion cases where W = V = 0 are typically studied in the Lebesgue and Sobolev spaces. However, as in the Keller-Segel problem, a Dirac measures may appear in finite time. We present the Wasserstein distance between measures, which is a natural framework for these equations, connecting with the theory of Optimal Transport. In fact, when U, V and W are convex, (ADE) can be studied as the gradient-flow of a free-energy functional (i.e. curves minimising this energy) in this Wasserstein distance, applying Calculus of Variations techniques. We will discuss the minimisation problem associated to F, with an interest to the existence of Dirac measures. Finally, we will present new results showing that indeed, in some cases besides Keller-Segel, states with a Delta can be achieved through solutions of the evolution problem

Fri, 14 May 2021

16:00 - 17:00
Virtual

Academic positions between PhD and permanent jobs - a panel discussion

Candy Bowtell and Luci Basualdo Bonatto
(University of Oxford)
Abstract

In this session we will host a Q&A with current researchers who have recently gone through successful applications as well as more senior staff who have been on interview panels and hiring committees for postdoctoral positions in mathematics. The session will be a chance to get varied perspectives on the application process and find out about the different types of academic positions to apply for.

The panel members will be Candy Bowtell, Luci Basualdo Bonatto, Mohit Dalwadi, Ben Fehrman and Frances Kirwan. 

Fri, 12 Mar 2021

16:00 - 17:00
Virtual

North Meets South

Elena Gal and Alexandre Bovet
Abstract

Speaker: Elena Gal (4pm)

Title: Associativity and Geometry

Abstract: An operation # that satisfies a#(b#c)=(a#b)#c is called "associative". Associativity is "common" - if we are asked to give an example of operation we are more likely to come up with one that has this property. However if we dig a bit deeper we encounter in geometry, topology and modern physics many operations that are not associative "on the nose" but rather up to an equivalence. We will talk about how to describe and work with this higher associativity notion.

Speaker: Alexandre Bovet (4:30pm)

Title: Investigating disinformation in social media with network science

Abstract:
While disinformation and propaganda have existed since ancient times, their importance and influence in the age of
social media is still not clear.  We investigate the spread of disinformation and traditional misinformation in Twitter in the context of the 2016 and 2020 US presidential elections. We analyse the information diffusion networks by reconstructing the retweet networks corresponding to each type of news and the top news spreaders of each network are identified. Our investigation provides new insights into the dynamics of news diffusion in Twitter, namely our results suggests that disinformation is governed by a different diffusion mechanism than traditional centre and left-leaning news. Centre and left leaning traditional news diffusion is driven by a small number of influential users, mainly journalists, and follow a diffusion cascade in a network with heterogeneous degree distribution which is typical of diffusion in social networks, while the diffusion of disinformation seems to not be controlled by a small set of users but rather to take place in tightly connected clusters of users that do not influence the rest of Twitter activity. We also investigate how the situation evolved between 2016 and 2020 and how the top news spreaders from the different news categories have driven the polarization of the Twitter ideological landscape during this time.

Fri, 05 Mar 2021

16:00 - 17:00
Virtual

Interviews for non-academic jobs and working as a mathematician in the BoE

William Durham
Abstract

In this session, William Durham from the Bank of England will give a presentation about working as a mathematician in the BoE, and will give advice on interviewing for non-academic jobs. He has previously provided mock interviews in our department for jobs aimed at mathematicians with PhDs, and is happy to conduct some mock interviews (remotely, of course) for individuals as well.

Please email Helen McGregor (@email) by Monday 22 February if you might be interested in having a mock interview with William Durham on 5 March.
 

Fri, 12 Feb 2021

16:00 - 17:00
Virtual

How to give a good talk (with an emphasis on online talks)

Ben Fehrman and Markus Upmeier
Abstract

In this session, Ben Fehrman and Markus Upmeier will give their thoughts on how to deliver a good talk for a conference or a seminar and tips for what to do and what to avoid. There will be a particular emphasis on how to give a good talk online. 

Fri, 05 Feb 2021

16:00 - 17:00
Virtual

North Meets South

Katherine Staden and Pierre Haas
Abstract

Speaker: Katherine Staden
Introduced by: Frances Kirwan
Title: Inducibility in graphs
Abstract: What is the maximum number of induced copies of a fixed graph H inside any graph on n vertices? Here, induced means that both edges and non-edges have to be correct. This basic question turns out to be surprisingly difficult, and it is not even known for all 4-vertex graphs H. I will survey the area and discuss some key results, ideas and techniques -- combinatorial, analytical and computer-assisted.

Speaker: Pierre Haas
Introduced by: Alain Goriely
Title: Shape-Shifting Droplets
Abstract: Experiments show that small oil droplets in aqueous surfactant solution flatten, upon slow cooling, into a host of polygonal shapes with straight edges and sharp corners. I will begin by showing how plane (and rather plain) geometry explains the sequence of these polygonal shapes. I will go on to show that geometric considerations of that ilk cannot however explain the three-dimensional polyhedral shapes that the initially spherical droplets evolve through while flattening. I will conclude by showing that the experimental data agree with the predictions of a model based on a partial phase transition of the oil near the droplet edges.

Fri, 29 Jan 2021

16:00 - 17:00
Virtual

Dealing with change and uncertainty: managing our mental well being

Tim Knowlsen
Abstract

For those who do not have login access to the Mathematical Institute website, please email @email to receive the link to this session.

The pandemic has forced all of us to assess our mental well being and the way in which we care for ourselves. We have learnt that good mental health is not a state but a constant evolution, and that it is natural that changes will take place on a daily and weekly timescale.
In this very timely session, Dr Tim Knowlson, Counselling Psychologist and University of Oxford Peer Support Programme Manager will discuss how we can care for our mental health and how we can develop resilience using current evidence-based research for tackling change and uncertainty that will serve us not only in the current pandemic but also provide us with tips that will serve us long into the future.

Fri, 27 Nov 2020

16:00 - 17:00
Virtual

Thoughts on preparing for interviews in the new online world

Abstract

In this session we will discuss how interviewing and being interviewed has changed now that interviews are conducted online. We will have a panel comprising Marya Bazzi, Mohit Dalwadi, Sam Cohen, Ian Griffiths and Frances Kirwan who have either experienced being interviewed online and have interviewed online and we will compare experiences with in-person interviews. 

Fri, 20 Nov 2020

16:00 - 17:00
Virtual

Using random matrix theory in numerical linear algebra: Fast and stable randomized low-rank matrix approximation

Yuji Nakatsukasa
(University of Oxford)
Abstract

In this new session a speaker tells us about how their area of mathematics can be used in different applications.

In this talk, Yuji Nakatsukasa tells us about how random matrix theory can be used in numerical linear algebra. 

 

Abstract

Randomized SVD is a topic in numerical linear algebra that draws heavily from random matrix theory. It has become an extremely successful approach for efficiently computing a low-rank approximation of matrices. In particular the paper by Halko, Martinsson, and Tropp (SIREV 2011) contains extensive analysis, and has made it a very popular method. The classical Nystrom method is much faster, but only applicable to positive semidefinite matrices. This work studies a generalization of Nystrom's method applicable to general matrices, and shows that (i) it has near-optimal approximation quality comparable to competing methods, (ii) the computational cost is the near-optimal O(mnlog n+r^3) for a rank-r approximation of dense mxn matrices, and (iii) crucially, it can be implemented in a numerically stable fashion despite the presence of an ill-conditioned pseudoinverse. Numerical experiments illustrate that generalized Nystrom can significantly outperform state-of-the-art methods. In this talk I will highlight the crucial role played by a classical result in random matrix theory, namely the Marchenko-Pastur law, and also briefly mention its other applications in least-squares problems and compressed sensing.

Fri, 13 Nov 2020

15:00 - 17:00
Virtual

Talking maths on YouTube for the general public (NB Earlier start time)

James Grime
Abstract

Talking maths on YouTube is a lot of fun. Your audience will contain maths enthusiasts, young people, and the general public. These are people who are interested in what you have to say, and want to learn something new. Maths videos on YouTube can be used to teach maths, or to just show people something interesting. Making videos doesn't have to be technically difficult, but is good practice in explaining difficult concepts in clear and succinct ways. In this session we will discuss how to make your first YouTube video, including questions about content, presentation and video making.

Dr James Grime started making his first maths YouTube videos while working as a postdoc in 2008. James has made maths videos with Cambridge University, the Royal Institution, and MathsWorldUK, and is also a presenter on the popular YouTube channel Numberphile, which now has over 3 million subscribers worldwide.

Fri, 06 Nov 2020

16:00 - 17:00
Virtual

North Meets South colloquium

Agnese Barbensi and Wolfger Peelaers
Abstract
Agnese Barbensi
Title: Knotted biopolymers
Abstract: Many biopolymers -most notably DNA- are knotted, or present some entanglement phenomena. The geometry and topology of these biopolymers has profound effects on their functioning. Using tools coming from topology and knot theory can help understanding the relations between the spatial arrangement and the behaviour of these molecules. In this talk we will give a brief overview of some useful techniques and recent work in this area. 
 
Wolfger Peelaers
Title: Vertex operator algebraic structures in quantum field theory
Abstract: Quantum field theory was originally developed to address questions involving interacting elementary particles, but ever since it has also provided, time and again, a bridge between ideas, concepts, and structures in mathematics and observables in physics. In this talk I will describe a remarkable connection of that type between vertex operator algebras and a class of highly symmetrical quantum field theories.
Fri, 30 Oct 2020

16:00 - 17:00
Virtual

Managing your supervisor (NB: No faculty permitted in the session)

Abstract

In this session we discuss techniques to get the most out of your supervision sessions and tips on how to work with different personalities and use your supervisor's skills to your advantage. The session will be run by DPhil students and discussion among students during the session is encouraged.  

Fri, 23 Oct 2020
16:00
Virtual

North meets South colloquium

Martin Gallauer and Zhaohe Dai
Abstract

Martin Gallauer (North): "Algebraic algebraic geometry"
If a space is described by algebraic equations, its algebraic invariants are endowed with additional structure. I will illustrate this with some simple examples, and speculate on the meaning of the title of my talk.

Zhaohe Dai (South): "Two-dimensional material bubbles"
Two-dimensional (2D) materials are a relatively new class of thin sheets consisting of a single layer of covalently bonded atoms and have shown a host of unique electronic properties. In 2D material electronic devices, however, bubbles often form spontaneously due to the trapping of air or ambient contaminants (such as water molecules and hydrocarbons) at sheet-substrate interfaces. Though they have been considered to be a nuisance, I will discuss that bubbles can be used to characterize 2D materials' bending rigidity after the pressure inside being well controlled. I will then focus on bubbles of relatively large deformations so that the elastic tension could drive the radial slippage of the sheet on its substrate. Finally, I will discuss that the consideration of such slippage is vital to characterize the sheet's stretching stiffness and gives new opportunities to understand the adhesive and frictional interactions between the sheet and various substrates that it contacts.
 

Fri, 12 Jun 2020

16:00 - 17:00
Virtual

North Meets South

Paolo Aceto
Abstract

Paolo Aceto

Knot concordance and homology cobordisms of 3-manifolds 

We introduce the notion of knot concordance for knots in the 3-sphere and discuss some key problems regarding the smooth concordance group. After defining homology cobordisms of 3-manifolds we introduce the integral and rational homology cobordism groups and briefly discuss their relationship with the concordance group. We conclude stating a few recent results and open questions on the structure of these groups.

Fri, 22 May 2020

16:00 - 17:00
Virtual

North Meets South

Lucie Domino and Clemens Koppensteiner
(University of Oxford)
Abstract
Lucie Domino
How to build 3D shapes from flat sheets using a three-centuries old theory
 
In this talk, I’ll present some of our recent work on morphing structures. We start from flat two-dimensional sheets which have been carefully cut and transform them into three-dimensional axisymmetric structures by applying edge-loads. We base our approach on the well-known Elastica theory developed by Euler to create structures with positive, negative, and variable Gaussian curvatures. We illustrate this with famous architectural examples, and verify our theory by both numerical simulations and physical experiments.
 
 
Clemens Koppensteiner
Logarithmic Riemann-Hilbert Correspondences

The classical Riemann-Hilbert correspondence is an elegant statement linking geometry (via flat connections) and topology (via local systems). However, when one allows the connections to have even simple singularities, the naive correspondence breaks down. We will outline some work on understanding this "logarithmic" setting.
Fri, 01 May 2020

16:00 - 17:00
Virtual

Guidance in applying for EPSRC fellowships

Laura McDonnell
(UKRI EPSRC)
Abstract

In this session, Laura will explain the process of applying for an EPSRC fellowship. In particular, there will be a discussion on the Future Leaders Fellowships, New Investigator Awards and Standard Grant applications. There will also be a discussion on applying for EPSRC funding more generally. Laura will answer any questions that people have. 

Fri, 13 Mar 2020

16:00 - 17:00
L2

North Meets South

Thomas Oliver and Ebrahim Patel
Abstract


Speaker: Thomas Oliver

Title: Hyperbolic circles and non-trivial zeros

Abstract: L-functions can often be considered as generating series of arithmetic information. Their non-trivial zeros are the subject of many famous conjectures, which offer countless applications to number theory. Using simple geometric observations in the hyperbolic plane, we will study the relationship between the zeros of L-functions and their characterisation amongst more general Dirichlet series.
 

Speaker: Ebrahim Patel

Title: From trains to brains: Adventures in Tropical Mathematics.

Abstract: Tropical mathematics uses the max and plus operator to linearise discrete nonlinear systems; I will present its popular application to solve scheduling problems such as railway timetabling. Adding the min operator generalises the system to allow the modelling of processes on networks. Thus, I propose applications such as disease and rumour spreading as well as neuron firing behaviour.