Forthcoming events in this series


Thu, 04 May 2023

16:00 - 17:00
C1

Superrigidity in von Neumann algebras

Daniel Drimbe
(KU Leuven)
Abstract

The pioneering work of Murray and von Neumann shows that any countable discrete group G gives rise in a canonical way to a group von Neumann algebra, denoted L(G). A main theme in operator algebras is to classify group von Neumann algebras, and hence, to understand how much information does L(G) remember of the underlying group G. In the amenable case, the classification problem is completed by the work of Connes from 1970s asserting that for all infinite conjugacy classes amenable groups, their von Neumann algebras are isomorphic.

In sharp contrast, in the non-amenable case, Popa's deformation rigidity/theory (2001) has led to the discovery of several instances when various properties of the group G are remembered by L(G). The goal of this talk is to survey some recent progress in this direction.

Tue, 02 May 2023

16:00 - 17:00
C1

Amenable group actions on C*-algebras and the weak containment problem

Siegfried Echterhoff
(University of Münster)
Abstract

The notion of amenable actions by discrete groups on C*-algebras has been introduced by Claire Amantharaman-Delaroche more than thirty years ago, and has become a well understood theory with many applications. So it is somewhat surprising that an established theory of amenable actions by general locally compact groups has been missed until 2020. We now present a theory which extends the discrete case and unifies several notions of approximation properties of actions which have been discussed in the literature. We also present far reaching results towards the weak containment problem which asks wether an action $\alpha:G\to \Aut(A)$ is amenable if and only if the maximal and reduced crossed products coincide.

In this lecture we report on joint work with Alcides Buss and Rufus Willett.

Tue, 25 Apr 2023

16:00 - 17:00
C1

Anomalous symmetries and invariants of operator algebras

Sergio Giron Pacheco
(University of Oxford)
Abstract

An anomalous symmetry of an operator algebra A is a mapping from a group G into the automorphism group of A which is multiplicative up to inner automorphisms. To any anomalous symmetry, there is an associated cohomology invariant in H^3(G,T). In the case that A is the Hyperfinite II_1 factor R and G is amenable, the associated cohomology invariant is shown to be a complete invariant for anomalous actions on R by the work of Connes, Jones, and Ocneanu.

In this talk, I will introduce anomalous actions from the basics discussing examples and the history of their study in the literature. I will then discuss two obstructions to possible cohomology invariants of anomalous actions on simple C*-algebras which arise from considering K-theoretic invariants of the algebras. One of the obstructions will be of algebraic flavour and the other will be of topological flavour. Finally, I will discuss the classification question for certain classes of anomalous actions.

Tue, 14 Mar 2023
16:00
C3

Linking vertex algebras and Wightman QFTs

Christopher Raymond
(Australian National University)
Abstract

There has been a great deal of interest in understanding the link between the axiomatic descriptions of conformal field theory given by vertex operator algebras and conformal nets. In recent work, we establish an equivalence between certain vertex algebras and conformally-symmetric quantum field theories in the sense of Wightman. In this talk I will give an overview of these results and discuss some of the difficulties that arise, the functional analytic properties of vertex algebras, and some of the ideas for future work in this area.

This is joint work with James Tener and Yoh Tanimoto.

Tue, 07 Mar 2023
16:00
C3

Cotlar identities for groups acting on tree like structures

Runlian Xia
(University of Glasgow)
Abstract

The Hilbert transform H is a basic example of a Fourier multiplier, and Riesz proved that H is a bounded operator on Lp(T) for all p between 1 and infinity.  We study Hilbert transform type Fourier multipliers on group algebras and their boundedness on corresponding non-commutative Lp spaces. The pioneering work in this direction is due to Mei and Ricard who proved Lp-boundedness of Hilbert transforms on free group von Neumann algebras using a Cotlar identity. In this talk, we introduce a generalised Cotlar identity and a new geometric form of Hilbert transform for groups acting on tree-like structures. This class of groups includes amalgamated free products, HNN extensions, left orderable groups and many others.  This is joint work with Adrián González and Javier Parcet.

Tue, 28 Feb 2023
16:00
C3

Some algebraic aspects of minimal dynamics on the Cantor set

Maryram Hosseini
(Queen Mary, University of London)
Abstract

By Jewett-Krieger theorems minimal dynamical systems on the Cantor set are topological analogous of ergodic systems on probability Lebesgue spaces. In this analogy and to study a Cantor minimal system, indicator functions of clopen sets (as continuous integer or real valued functions) are considered while they are mod out by the subgroup of all co-boundary functions. That is how dimension group which is an operator algebraic object appears in dynamical systems. In this talk, I try to explain a bit more about dimension groups from dynamical point of view and how it relates to topological factoring and spectrum of Cantor minimal systems.

Tue, 21 Feb 2023
16:00
C3

On the joint spectral radius

Emmanuel Breuillard
(University of Oxford)
Abstract

The joint spectral radius of a finite family S of matrices measures the rate of exponential growth of the maximal norm of an element from the product set S^n as n grows. This notion was introduced by Rota and Strang in the 60s. It arises naturally in a number of contexts in pure and applied mathematics. I will discuss its basic properties and focus on a formula of Berger and Wang and results of J. Bochi that extend to several matrices the classical for formula of Gelfand that relates the growth rate of the powers of a single matrix to its spectral radius. I give new proofs and derive explicit estimates with polynomial dependence on the dimension, refining these results. If time permits I will also discuss connections with the Tits alternative, the notion of joint spectrum, and a geometric version of these results regarding groups acting on non-positively curved spaces.

Tue, 14 Feb 2023
16:00
C3

Symmetric Tensor Products: An Operator Theory Approach

Ryan O'Loughlin
(University of Leeds)
Abstract

Although tensor products and their symmetrisation have appeared in mathematical literature since at least the mid-nineteenth century, they rarely appear in the function-theoretic operator theory literature. In this talk, I will introduce the symmetric and antisymmetric tensor products from an operator theoretic point of view. I will present results concerning some of the most fundamental operator-theoretic questions in this area, such as finding the norm and spectrum of the symmetric tensor products of operators. I will then work through some examples of symmetric tensor products of familiar operators, such as the unilateral shift, the adjoint of the shift, and diagonal operators.

Tue, 07 Feb 2023
16:00
C3

Rigidity examples constructed with wreath-like product groups

Bin Sun
(University of Oxford)
Abstract

Wreath-like product groups were introduced recently and used to construct the first positive examples of rigidity conjectures of Connes and Jones. In this talk, I will review those examples, as well as discuss some ideas to construct examples with other rigidity phenomena by modifying the wreath-like product construction.

Tue, 24 Jan 2023
16:00
C3

Braided tensor categories as invariants of von Neumann algebras

Corey Jones
(North Carolina State University)
Abstract

In the operator algebraic approach to quantum field theory, the DHR category is a braided tensor category describing topological point defects of a theory with at least 1 (+1) dimensions. A single von Neumann algebra with no extra structure can be thought of as a 0 (+1) dimensional quantum field theory. In this case, we would not expect a braided tensor category of point defects since there are not enough dimensions to implement a braiding. We show, however, that one can think of central sequence algebras as operators localized ``at infinity", and apply the DHR recipe to obtain a braided tensor category of bimodules of a von Neumann algebra M, which is a Morita invariant. When M is a II_1 factor, the braided subcategory of automorphic objects recovers Connes' chi(M) and Jones' kappa(M). We compute this for II_1 factors arising naturally from subfactor theory and show that any Drinfeld center of a fusion category can be realized. Based on joint work with Quan Chen and Dave Penneys.

Tue, 17 Jan 2023
16:00
C3

Partial Pontryagin duality for actions of quantum groups on C*-algebras

Kan Kitamura
(University of Tokyo)
Abstract

In view of Takesaki-Takai duality, we can go back and forth between C*-dynamical systems of an abelian group and ones of its Pontryagin dual by taking crossed products. In this talk, I present a similar duality between actions on C*-algebras of two constructions of locally compact quantum groups: one is the bicrossed product due to Vaes-Vainerman, and the other is the double crossed product due to Baaj-Vaes. I will explain the situation by illustrating the example coming from groups. If time permits, I will also discuss its consequences in the case of quantum doubles.

Thu, 12 Jan 2023
16:00
Quillen Room

A finite-dimensional approach to K-homology.

Rufus Willett
(University of Hawaii)
Abstract

K-homology is the dual theory to K-theory for C*-algebras.  I will show how under appropriate quasi-diagonality and countability assumptions K-homology (more generally, KK-theory) can be realized by completely positive and contractive, and approximately multiplicative, maps to matrix algebras modulo an appropriate equivalence relation.  I’ll briefly explain some connections to manifold topology and existence / uniqueness theorems in C*-algebra classification theory (due to Dadarlat and Eilers).

 

Some of this is based on joint work with Guoliang Yu, and some is work in progress

Tue, 29 Nov 2022
16:00
C1

Constructing CFTs

Andre Henriques
(University of Oxford)
Abstract

Since Segal's formulation of axioms for 2d CFTs in the 80s, it has remained a major problem to construct examples of CFTs that satisfy the axioms.

I will report on ongoing joint work with James Tener in that direction.

Tue, 22 Nov 2022
16:00
C1

A quantization of coarse structures and uniform Roe algebras

David Sherman
(University of Virginia)
Abstract

A coarse structure is a way of talking about "large-scale" properties.  It is encoded in a family of relations that often, but not always, come from a metric.  A coarse structure naturally gives rise to Hilbert space operators that in turn generate a so-called uniform Roe algebra.

In work with Bruno Braga and Joe Eisner, we use ideas of Weaver to construct "quantum" coarse structures and uniform Roe algebras in which the underlying set is replaced with an arbitrary represented von Neumann algebra.  The general theory immediately applies to quantum metrics (suitably defined), but it is much richer.  We explain another source based on measure instead of metric, leading to the new, large, and easy-to-understand class of support expansion C*-algebras.

I will present the big picture: where uniform Roe algebras come from, how Weaver's framework facilitates our definitions.  I will focus on a few illustrative examples and will not presume familiarity with coarse structures or von Neumann algebras.

Fri, 18 Nov 2022
16:00
C1

Rigidity of Banach *-algebras

Eduard Ortega
(NTNU. Trondheim)
Abstract

It is well known that two non-isomorphic groups (groupoids) can produce isomorphic C*-algebras. That is, group (groupoid) C*-algebras are not rigid. This is not the case of the L^p-operator algebras associated to locally compact groups ( effective groupoids) where the isomorphic class of the group (groupoid) uniquely determines up to isometric isomorphism the associated L^p-algebras. Thus, L^p-operator algebras are rigid.  Liao and Yu introduced a class of Banach *-algebras associated to locally compact groups. We will see that this family of Banach *-algebras are also rigid.  

Tue, 15 Nov 2022
16:00
C1

Injective factors arising as discrete quantum group von Neumann algebras

Jacek Krajczok
(University of Glasgow)
Abstract

It is well known that if a group von Neumann algebra of a (nontrivial) discrete group is a factor, then it is a factor of type II_1. During the talk, I will answer the following question: which types appear as types of injective factors being group von Neumann algebras of discrete quantum groups (or looking from the dual perspective - von Neumann algebras of bounded functions on compact quantum groups)? An important object in our work is the subgroup of real numbers t for which the scaling automorphism tau_t is inner. This is joint work with Piotr Sołtan.

Tue, 08 Nov 2022
16:00
C1

Interacting Systems – where Analysis, PDEs and Probability meet

Amit Einav
(University of Durham)
Abstract

We are surrounded by systems that involve many elements and the interactions between them: the air we breathe, the galaxies we watch, herds of animals roaming the African planes and even us – trying to decide on whom to vote for.

As common as such systems are, their mathematical investigation is far from simple. Motivated by the realisation that in most cases we are not truly interested in the individual behaviour of each and every element of the system but in the average behaviour of the ensemble and its elements, a new approach emerged in the late 1950s - the so-called mean field limits approach. The idea behind this approach is fairly intuitive: most systems we encounter in real life have some underlying pattern – a correlation relation between its elements. Giving a mathematical interpretation to a given phenomenon and its emerging pattern with an appropriate master/Liouville equation, together with such correlation relation, and taking into account the large number of elements in the system results in a limit equation that describes the behaviour of an average limit element of the system. With such equation, one hopes, we could try and understand better the original ensemble.

In our talk we will give the background to the formation of the ideas governing the mean field limit approach and focus on one of the original models that motivated the birth of the field – Kac’s particle system. We intend to introduce Kac’s model and its associated (asymptotic) correlation relation, chaos, and explore attempts to infer information from it to its mean field limit – The Boltzmann-Kac equation.

Tue, 01 Nov 2022
16:00
C1

The noncommutative factor theorem for higher rank lattices

Cyril Houdayer
(Université Paris-Saclay, Orsay)
Abstract

In this talk, I will present a noncommutative analogue of Margulis’ factor theorem for higher rank lattices. More precisely, I will give a complete description of all intermediate von Neumann subalgebras sitting between the von Neumann algebra of the lattice and the von Neumann algebra of the action of the lattice on the Furstenberg-Poisson boundary. As an application, we infer that the rank of the semisimple Lie group is an invariant of the pair of von Neumann algebras. I will explain the relevance of this result regarding Connes’ rigidity conjecture.

Tue, 25 Oct 2022
16:00
C1

Chaotic tracial dynamics

Bhishan Jacelon
(Czech Academy of Sciences)
Abstract

The classification by K-theory and traces of the category of simple, separable, nuclear, Z-stable C*-algebras satisfying the UCT is an extraordinary feat of mathematics. What's more, it provides powerful machinery for the analysis of the internal structure of these regular C*-algebras. In this talk, I will explain one such application of classification: In the subclass of classifiable C*-algebras consisting of those for which the simplex of tracial states is nonempty, with extremal boundary that is compact and has the structure of a connected topological manifold, automorphisms can be shown to be generically tracially chaotic. Using similar ideas, I will also show how certain stably projectionless C*-algebras can be described as crossed products.

Fri, 21 Oct 2022
16:00
C1

Selected aspects of the dynamical Kirchberg-Phillips theorem

Gabor Szabo
(KU Leuven)
Abstract

 I will start this talk with a brief introduction and summary of the outcome of a joint work with James Gabe. An important special case of the main result is that for any countable discrete amenable group G, any two outer G-actions on stable Kirchberg algebras are cocycle conjugate precisely when they are equivariantly KK-equivalent. In the main body of the talk, I will outline the key arguments toward a special case of the 'uniqueness theorem', which is one of the fundamental ingredients in our theory: Suppose we have two G-actions on A and B such that B is a stable Kirchberg algebra and the action on B is outer and equivariantly O_2-absorbing. Then any two cocycle embeddings from A to B are approximately unitarily equivalent. If time permits, I will provide a (very rough) sketch of how this leads to the dynamical O_2-embedding theorem, which implies that such cocycle embeddings always exist in the first place.

Tue, 18 Oct 2022
16:00
C1

Equivariant Jiang-Su stability

Lise Wouters
(KU Leuven)
Abstract

Equivariant Jiang-Su stability is an important regularity property for group actions on C*-algebras.  In this talk, I will explain this property and how it arises naturally in the context of the classification of C*-algebras and their actions. Depending on the time, I will then explain a bit more about the nature of equivariant Jiang- Su stability and the kind of techniques that are used to study it, including a recent result of Gábor Szabó and myself establishing an equivalence with equivariant property Gamma under certain conditions.
 

Tue, 11 Oct 2022
16:00
C1

Quantum limits

Veronique Fischer
(University of Bath)
Abstract

In this talk, I will discuss the notion of quantum limits from different viewpoints: Cordes' work on the Gelfand theory for pseudo-differential operators dating from the 70’s as well as the micro-local defect measures and semi-classical measures of the 90’s. I will also explain my motivation and strategy to obtain similar notions in subRiemannian or subelliptic settings.