Forthcoming events in this series


Mon, 01 May 2017

14:15 - 15:15
L4

E-polynomials of character varieties and applications

Marina Logares
(Plymouth)
Abstract

Character varieties have been studied largely by means of their correspondence to the moduli space of Higgs bundles. In this talk we will report on a method to study their Hodge structure, in particular to compute their E- polynomials. Moreover, we will explain some applications of the given method such as, the study of the topology of the moduli space of doubly periodic instantons. This is joint work with A. González, V.Muñoz and P. Newstead.

 

Mon, 24 Apr 2017

14:15 - 15:15
L4

Soliton resolution conjecture

Roland Grinis
(Oxford)
Abstract

We will give an overview of the Soliton Resolution Conjecture, focusing mainly on the Wave Maps Equation. This is a program about understanding the formation of singularities for a variety of critical hyperbolic/dispersive equations, and stands as a remarkable topic of research in modern PDE theory and Mathematical Physics. We will be presenting our contributions to this field, elaborating on the required background, as well as discussing some of the latest results by various authors.

Mon, 06 Mar 2017

14:15 - 15:15
L4

Moduli spaces of instanton sheaves on projective space

Marcos Jardim
(Campinas (visiting Edinburgh))
Abstract

Instanton bundles were introduced by Atiyah, Drinfeld, Hitchin and Manin in the late 1970s as the holomorphic counterparts, via twistor
theory, to anti-self-dual connections (a.k.a. instantons) on the sphere S^4. We will revise some recent results regarding some of the basic
geometrical features of their moduli spaces, and on its possible degenerations. We will describe the singular loci of instanton sheaves,
and how these lead to new irreducible components of the moduli space of stable sheaves on the projective space.

Mon, 27 Feb 2017

14:15 - 15:15
L4

Singularities of Lagrangian Mean Curvature Flow

Yng-Ing Lee
(National Taiwan University (visiting Oxford))
Abstract

Mean Curvature Flow (MCF) is a canonical way to deform sub-manifolds to minimal sub-manifolds. It also improves the geometric properties of sub-manifolds along the flow. The condition of being Lagrangian is preserved for smooth solutions of MCF in a Kahler-Einstein manifold. We call it Lagrangian mean curvature flow (LMCF) when requires slices of the flow to be Lagrangian.

Unfortunately, singularities may occur and cause obstructions to continue MCF in general. It is thus very important to understand the singularities, particularly isolated singularities of the flow. Isolated singularity models on soliton solutions that include self-similar solutions and translating solutions. In this talk, I will report some of my work with my collaborators on studying singularities of LMCF. It includes soliton solutions with different important properties and an in-progress joint project with Dominic Joyce that aims to understand how singularities form and construct examples to demonstrate these behaviours.

 

Mon, 20 Feb 2017

14:15 - 15:15
L4

The symplectic geometry of twistor spaces

Joel Fine
(Universite Libre de Bruxelles)
Abstract

Twistor spaces were originally devised as a way to use techniques of complex geometry to study 4-dimensional Riemannian manifolds. In this talk I will show that they also make it possible to apply techniques from symplectic geometry.  In the first part of the talk I will explain that when the 4-manifold satisfies a certain curvature inequality, its twistor space carries a natural symplectic structure. In the second part of the talk I will discuss some results in Riemannian geometry which can be proved via the symplectic geometry of the twistor space. Finally, if there is time, I will end with some speculation
about potential future applications, involving Poincaré—Einstein 4-manifolds, minimal surfaces and distinguished closed curves in their conformal infinities

Mon, 13 Feb 2017

14:15 - 15:15
L4

Gauge Theory and Symplectic Duality

Matt Bullimore
(Oxford)
Abstract

Symplectic duality is an equivalence of mathematical structures associated to pairs of hyper-Kahler cones. All known examples arise as the `Higgs branch’ and `Coulomb branch' of a 3d superconformal quantum field theory. In particular, there is a rich class of examples where the Higgs branch is a Nakajima quiver variety and the Coulomb branch is a moduli spaceof singular magnetic monopoles. In this case, I will show that the equivariant cohomology of the moduli space of based quasi-maps to the Higgs branch transforms as a Verma module for the deformation quantisation of the Coulomb branch

Mon, 06 Feb 2017

14:15 - 15:15
L4

Monopoles and the Sen Conjecture

Michael Singer
(University College London)
Abstract

 The Sen conjecture, made in 1994, makes precise predictions about the existence of L^2 harmonic forms on the monopole moduli spaces. For each positive integer k, the moduli space M_k of monopoles of charge k is a non-compact smooth manifold of dimension 4k, carrying a natural hyperkaehler metric.  Thus studying Sen’s conjectures requires a good understanding of the asymptotic structure of M_k and its metric.  This is a challenging analytical problem, because of the non-compactness of M_k and because its asymptotic structure is at least as complicated as the partitions of k.  For k=2, the metric was written down explicitly by Atiyah and Hitchin, and partial results are known in other cases.  In this talk, I shall introduce the main characters in this story and describe recent work aimed at proving Sen’s conjecture.

Mon, 30 Jan 2017

14:15 - 15:15
L4

Quivers, Dessins and Calabi-Yau

Yang-hui He
(City University London)
Abstract

We discuss how bipartite graphs on Riemann surfaces encapture a wealth of information about the physics and the mathematics of gauge theories. The
correspondence between the gauge theory, the underlying algebraic geometry of its space of vacua, the combinatorics of dimers and toric varieties, as
well as the number theory of dessin d'enfants becomes particularly intricate under this light.

Mon, 23 Jan 2017

14:15 - 15:15
L4

Moduli spaces of unstable curves

Frances Kirwan
(Oxford)
Abstract

The construction of the moduli spaces of stable curves of fixed genus is one of the classical applications of Mumford's geometric invariant theory (GIT).  Here a projective curve is stable if it has only nodes as singularities and its automorphism group is finite. Methods from non-reductive GIT allow us to classify the singularities of unstable curves in such a way that we can construct moduli spaces of unstable curves of fixed singularity type.

Mon, 16 Jan 2017

14:15 - 15:15
L4

Invariants and moduli revisited: the case of a single root

Brent Doran
Abstract

What is the correct combinatorial object to encode a linear representation?  Many shadows of this problem have been studied:moment polytopes, Duistermaat-Heckman measures, Okounkov bodies.  We suggest that already in very simple cases these miss a crucial feature.  The ring theory, as opposed to just the linear algebra, of the group action on the coordinate ring, depends on some non-trivial lattice geometry and an associated filtration.  Some striking similarities to, and key differences from, the theory of toric varieties ensue.  Finite and non-finite generation phenomena emerge naturally.  We discuss motivations from, and applications to, questions in the effective geometry of moduli of curves.

 

Mon, 28 Nov 2016
14:15
L4

 Moduli spaces of generalized holomorphic bundles

Ruxandra Moraru
(Waterloo)
Abstract

Generalized holomorphic bundles are the analogues of holomorphic vector bundles in the generalized geometry setting. In this talk, I will discuss the deformation theory of generalized holomorphic bundles on generalized Kaehler manifolds. I will also give explicit examples of moduli spaces of generalized holomorphic bundles on Hopf surfaces and on Inoue surfaces. This is joint work with Shengda Hu and Mohamed El Alami

Mon, 21 Nov 2016
14:15
L4

Minimal Log Discrepancy of Isolated Singularities and Reeb Orbits

Mark McLean
(Stony Brook)
Abstract

Let A be an affine variety inside a complex N dimensional vector space which either has an isolated singularity at the origin or is smooth at the origin. The intersection of A with a very small  sphere turns out to be a contact manifold called the link of A. Any contact manifold contactomorphic to the link of A is said to be Milnor fillable by A. If the first Chern class of our link is 0 then we can assign an invariant of our singularity called the minimal
discrepancy. We relate the minimal discrepancy with indices of certain Reeb orbits on our link. As a result we show that the standard contact
5 dimensional sphere has a unique Milnor filling up to normalization. This generalizes a Theorem by Mumford.

Mon, 14 Nov 2016
14:15
L4

Integrals and symplectic forms on infinitesimal quotients

Brent Pym
(Oxford)
Abstract

Title: Integrals and symplectic forms on infinitesimal quotients

Abstract: Lie algebroids are models for "infinitesimal actions" on manifolds: examples include Lie algebra actions, singular foliations, and Poisson brackets.  Typically, the orbit space of such an action is highly singular and non-Hausdorff (a stack), but good algebraic techniques have been developed for studying its geometry.  In particular, the orbit space has a formal tangent complex, so that it makes sense to talk about differential forms.  I will explain how this perspective sheds light on the differential geometry of shifted symplectic structures, and unifies a number of classical cohomological localization theorems.  The talk is
based mostly on joint work with Pavel Safronov.

 

Mon, 07 Nov 2016
14:15
L4

On short-time existence for mean curvature flow of surface clusters with triple edges

Felix Schulze
(UCL)
Abstract

We will discuss two recent short-time existence results for (1) mean curvature of surface clusters, where n-dimensional surfaces in R^{n+k}, are allowed to meet at equal angles along smooth edges, and (2) for planar networks, where curves are initially allowed to meet in multiple junctions that resolve immediately into triple junctions with equal angles. The first result, which is joint work with B. White, follows from an elliptic regularisation scheme, together with a local regularity result for flows with triple junctions, which are close to a static flow of the half-planes. The second result, which is joint work with T. Ilmanen and A.Neves, relies on a monotonicity formula for expanding solutions and a local regularity result for the network flow. 
 

Mon, 31 Oct 2016

14:15 - 15:15
L4

The cohomological McKay correspondence via Floer theory

Alex Ritter
(Oxford)
Abstract

Abstract: (This is joint work with Mark McLean, Stony Brook University N.Y.).


The classical McKay correspondence is a 1-1 correspondence between finite subgroups G of SL(2,C) and simply laced Dynkin diagrams (the ADE classification). These diagrams determine the representation theory of G, and they also describe the intersection theory between the irreducible components of the exceptional divisor of the minimal resolution Y of the simple surface singularity C^2/G. In particular those components generate the homology of Y. In the early 1990s, Miles Reid conjectured a far-reaching generalisation to higher dimensions: given a crepant resolution Y of the singularity C^n/G, where G is a finite subgroup of SL(n,C), the claim is that the conjugacy classes of G are in 1-1 correspondence with generators of the cohomology of Y. This has led to much active research in algebraic geometry in recent years, in particular Batyrev proved the conjecture in 2000 using algebro-geometric techniques (Kontsevich's motivic integration machinery). The goal of my talk is to present work in progress, jointly with Mark McLean, which proves the conjecture using symplectic topology techniques. We construct a certain symplectic cohomology group of Y whose generators are Hamiltonian orbits in Y to which one can naturally associate a conjugacy class in G. We then show that this symplectic cohomology recovers the classical cohomology of Y.

This work is part of a large-scale project which aims to study the symplectic topology of resolutions of singularities also outside of the crepant setup.

 

 

Mon, 24 Oct 2016

14:15 - 15:15
L4

Automorphic gluing in geometric Langlands via sheaves of categories with Hochschild cochains action

Dario Beraldo
(Oxford)
Abstract

I will define the notion of "sheaf of categories with a local action of Hochschild cochains" over a stack. (This notion is analogous to D-modules, in the same way as the notion of "sheaf of categories" is analogous to quasi-coherent sheaves.) I will prove that both categories appearing in geometric Langlands carry this structure over the stack of de Rham {\check{G}}-local systems. Using this, I will explain how to glue D-mod(Bun_G) out of *tempered* D-modules associated to smaller Levi subgroups of G.

 

Mon, 17 Oct 2016
14:15
L4

Invariant G_2-instantons

Jason Lotay
(UCL)
Abstract

Since Donaldson-Thomas proposed a programme for studying gauge theory in higher dimensions, there has
been significant interest in understanding special Yang-Mills connections in Ricci-flat 7-manifolds with holonomy
G_2 called G_2-instantons.  However, still relatively little is known about these connections, so we begin the
systematic study of G_2-instantons in the SU(2)^2-invariant setting.  We provide existence, non-existence and
classification results, and exhibit explicit sequences of G_2-instantons where “bubbling" and "removable
singularity" phenomena occur in the limit.  This is joint work with Goncalo Oliveira (Duke).

 

Mon, 10 Oct 2016
14:15
L4

Ricci Solitons

Andrew Dancer
(Oxford)
Abstract

We review the concept of solitons in the Ricci flow, and describe various methods for generating examples, including some where the equations

may be solved in closed form

Mon, 06 Jun 2016
14:15
L4

Obstructions to positive scalar curvature via submanifolds of different codimension

Thomas Schick
(Gottingen)
Abstract

Question: Given a smooth compact manifold $M$ without boundary, does $M$
 admit a Riemannian metric of positive scalar curvature?

 We focus on the case of spin manifolds. The spin structure, together with a
 chosen Riemannian metric, allows to construct a specific geometric
 differential operator, called Dirac operator. If the metric has positive
 scalar curvature, then 0 is not in the spectrum of this operator; this in
 turn implies that a topological invariant, the index, vanishes.

  We use a refined version, acting on sections of a bundle of modules over a
 $C^*$-algebra; and then the index takes values in the K-theory of this
 algebra. This index is the image under the Baum-Connes assembly map of a
 topological object, the K-theoretic fundamental class.

 The talk will present results of the following type:

 If $M$ has a submanifold $N$ of codimension $k$ whose Dirac operator has
 non-trivial index, what conditions imply that $M$ does not admit a metric of
 positive scalar curvature? How is this related to the Baum-Connes assembly
 map? 

 We will present previous results of Zeidler ($k=1$), Hanke-Pape-S. ($k=2$),
 Engel and new generalizations. Moreover, we will show how these results fit
 in the context of the Baum-Connes assembly maps for the manifold and the
 submanifold. 
 

Mon, 23 May 2016
14:15
L4

Poncelet's theorem and Painleve VI

Vasilisa Shramchenko
(Universite de Sherbrooke)
Abstract

In 1995 N. Hitchin constructed explicit algebraic solutions to the Painlevé VI (1/8,-1/8,1/8,3/8) equation starting with any Poncelet trajectory, that is a closed billiard trajectory inscribed in a conic and circumscribed about another conic. In this talk I will show that Hitchin's construction is the Okamoto transformation between Picard's solution and the general solution of the Painlevé VI (1/8,-1/8,1/8,3/8) equation. Moreover, this Okamoto transformation can be written in terms of an Abelian differential of the third kind on the associated elliptic curve, which allows to write down solutions to the corresponding Schlesinger system in terms of this differential as well. This is a joint work with V. Dragovic.

Mon, 16 May 2016
14:15
L4

Quantitative Liouville theorems for equations of the Schouten tensor in conformal geometry.

Luc Nguyen
(Oxford)
Abstract

The classical Yamabe problem asks to find in a given conformal class a metric of constant scalar curvature. In fully nonlinear analogues, the scalar curvature is replaced by certain functions of the eigenvalue of the Schouten curvature tensor. I will report on quantitative Liouville theorems and fine blow-up analysis for these problems. Joint work with Yanyan Li.
 

Mon, 09 May 2016
14:15
L4

Contracting (-1) curves on noncommutative surfaces

Susan Sierra
(Edinburgh)
Abstract

We give a noncommutative analogue of Castelnuovo's classic theorem that (-1) lines on a smooth surface can be contracted, and show how this may be used to construct an explicit birational map between a noncommutative P^2 and a noncommutative quadric surface. This has applications to the classification of noncommutative projective surfaces, one of the major open problems in noncommutative algebraic geometry. We will not assume a background in noncommutative ring theory.  The talk is based on joint work with Rogalski and Staffor

Mon, 02 May 2016
14:15
L4

Untwisted and twisted open de Rham spaces

Michael Lennox Wong
(Duisburg-Essen University)
Abstract

 An "open de Rham space" refers to a moduli space of meromorphic connections on the projective line with underlying trivial bundle.  In the case where the connections have simple poles, it is well-known that these spaces exhibit hyperkähler metrics and can be realized as quiver varieties.  This story can in fact be extended to the case of higher order poles, at least in the "untwisted" case.  The "twisted" spaces, introduced by Bremer and Sage, refer to those which have normal forms diagonalizable only after passing to a ramified cover.  These spaces often arise as quotients by unipotent groups and in some low-dimensional examples one finds some well-known hyperkähler manifolds, such as the moduli of magnetic monopoles.  This is a report on ongoing work with Tamás Hausel and Dimitri Wyss.