Forthcoming events in this series


Mon, 02 May 2016
14:15
L4

Untwisted and twisted open de Rham spaces

Michael Lennox Wong
(Duisburg-Essen University)
Abstract

 An "open de Rham space" refers to a moduli space of meromorphic connections on the projective line with underlying trivial bundle.  In the case where the connections have simple poles, it is well-known that these spaces exhibit hyperkähler metrics and can be realized as quiver varieties.  This story can in fact be extended to the case of higher order poles, at least in the "untwisted" case.  The "twisted" spaces, introduced by Bremer and Sage, refer to those which have normal forms diagonalizable only after passing to a ramified cover.  These spaces often arise as quotients by unipotent groups and in some low-dimensional examples one finds some well-known hyperkähler manifolds, such as the moduli of magnetic monopoles.  This is a report on ongoing work with Tamás Hausel and Dimitri Wyss.

Mon, 25 Apr 2016
14:15
L4

K-contact & Sasakian manifolds of dimension 5

Vicente Muñoz
(Universidad Complutense de Madrid)
Abstract

Sasakian manifolds are odd-dimensional counterparts of Kahler manifolds in even dimensions, 
with K-contact manifolds corresponding to symplectic manifolds. It is an interesting problem to find
obstructions for a closed manifold to admit such types of structures and in particular, to construct
K-contact manifolds which do not admit Sasakian structures. In the simply-connected case, the
hardest dimension is 5, where Kollar has found subtle obstructions to the existence of Sasakian 
structures, associated to the theory of algebraic surfaces.
In this talk, we develop methods to distinguish K-contact manifolds from Sasakian ones in 
dimension 5. In particular, we find the first example of a closed 5-manifold with first Betti number 0 which is K-contact but which carries no semi-regular Sasakian structure.

 (Joint work with J.A. Rojo and A. Tralle).

Mon, 29 Feb 2016
14:15
L4

The topology of area-minimizing surfaces in manifolds of non-negative curvature

Otis Chodosh
(Cambridge)
Abstract

Work of Schoen--Yau in the 70's/80's shows that area-minimizing (actually stable) two-sided surfaces in three-manifolds of non-negative scalar curvature are of a special topological type: a sphere, torus, plane or cylinder. The torus and cylinder cases are "borderline" for this estimate. It was shown by Cai--Galloway in the late 80's that the torus can only occur in a very special ambient three manifold. We complete the story by showing that a similar result holds for the cylinder. The talk should be accessible to those with a basic knowledge of curvature in Riemannian geometry.

Mon, 22 Feb 2016
14:15
L4

The Gromoll filtration, Toda brackets and positive scalar curvature

OAC-manifolds meeting: Diarmuid Crowley
(Aberdeen)
Abstract
An exotic (n+1)-sphere has disc of origin D^k if k is the smallest integer such that some clutching diffeomorphism of the n-disc which builds the exotic sphere can be written as an (n-k)-parameter family of diffeomorphisms of the k-disc.
 
In this talk I will present a new method for constructing exotic spheres with small disc of origin via Toda brackets.  
 
This method gives exotic spheres in all dimensions 8j+1 and 8j+2 with disc of origin 6 and with Dirac operators of non-zero index (such spheres are often called "Hitchin spheres").
 
I will also briefly discuss implications of our results for the space of positive scalar curvature metrics on spin manifolds of dimension 6 and higher, and in particular the relationship of this project to the work of Botvinnik, Ebert and Randal-Williams.
 
This is part of joint work with Thomas Schick and Wolfgang Steimle.
Mon, 15 Feb 2016
14:15
L4

Generalized Kähler structures from a holomorphic Poisson viewpoint

Marco Gualtieri
(Toronto)
Abstract

After reviewing the main results relating holomorphic Poisson geometry to generalized Kahler structures, I will explain some recent progress in deforming generalized Kahler structures. I will also describe a new way to view generalized kahler geometry purely in terms of Poisson structures.

Mon, 01 Feb 2016
02:15
L4

Torelli theorems and integrable systems for parabolic Higgs bundles

Marina Logares
(Oxford)
Abstract

In the same way that the classical Torelli theorem determines a curve from its polarized Jacobian we show that moduli spaces of parabolic bundles and parabolic Higgs bundles over a compact Riemann surface X  also determine X. We make use of a theorem of Hurtubise on the geometry of algebraic completely integrable systems in the course of the proof. This is a joint work with I. Biswas and T. Gómez 

Mon, 30 Nov 2015
14:15
L4

The structure of instability in moduli theory

Daniel Halpern-Leistner
(Columbia)
Abstract

I will discuss theta-stability, a framework for analyzing moduli problems in algebraic geometry by finding a special kind of stratification called a theta-stratification, a notion which generalizes the Kempf-Ness stratification in geometric invariant theory and the Harder-Narasimhan-Shatz stratification of the moduli of vector bundles on a Riemann surface.

Mon, 16 Nov 2015
14:15
L6

Painlev'e equations, cluster algebras and quantisation

Marta Mazzocco
(Loughborough)
Abstract

The famous Greek astronomer Ptolemy created his well-known table of chords in order to aid his astronomical observations. This table was based on the renowned relation between the four sides and the two diagonals of a quadrilateral whose vertices lie on a common circle.

In 2002, the mathematicians Fomin and Zelevinsky generalised this relation to introduce a new structure called cluster algebra. This is a set of clusters, each cluster made of n numbers called cluster variables. All clusters are obtained from some initial cluster by a sequence of transformations called mutations. Cluster algebras appear in a variety of topics, including total positivity, number theory, Teichm\”uller theory and computer graphics. A quantisation procedure for cluster algebras was proposed by Berenstein and Zelevinsky in 2005.

After introducing the basics about cluster algebras, in this talk we will link cluster algebras to the theory of Painlevé equations. This link will provide the foundations to introduce a new class of cluster algebras of geometric type. We will show that the quantisation of these new cluster algebras provide a geometric setting for the Berenstein–Zelevinsky construction.  

Mon, 02 Nov 2015
14:15
L4

On the principal Ricci curvatures of a Riemannian 3-manifold

Amir Aazami
(IPMU)
Abstract
Milnor has shown that three-dimensional Lie groups with left invariant Riemannian metrics furnish examples of 3-manifolds with principal Ricci curvatures of fixed signature --- except for the signatures (-,+,+), (0,+,-), and (0,+,+).  We examine these three cases on a Riemannian 3-manifold, and prove global obstructions in certain cases.  For example, if the manifold is closed, then the signature (-,+,+) is not globally possible if it is of the form -µ,f,f, with µ a positive constant and f a smooth function that never takes the values 0,-µ (this generalizes a result by Yamato '91).  Similar obstructions for the other cases will also be discussed.  Our methods of proof rely upon frame techniques inspired by the Newman-Penrose formalism.  Thus, we will close by turning our attention to four dimensions and Lorentzian geometry, to uncover a relation between null vector fields and exact symplectic forms, with relations to Weinstein structures. 
Mon, 26 Oct 2015
14:15
L4

The complex geometry of Teichmüller spaces and bounded symmetric domains.

Stergios Antonakoudis
(Cambridge)
Abstract

From a complex analytic perspective, both Teichmüller spaces and
symmetric spaces can be realised as contractible bounded domains, that
have several features in common but also exhibit many differences. In
this talk we will study isometric maps between these two important
classes of bounded domains equipped with their intrinsic Kobayashi metric.

Mon, 15 Jun 2015
14:15
L4

Hermitian metrics with constant Chern scalar curvature

Cristiano Spotti
(Cambridge)
Abstract

I will discuss some properties of Hermitian metrics on compact complex manifolds, having constant Chern scalar curvature, focusing on the existence problem in fixed Hermitian conformal classes (the "Chern-Yamabe problem"). This is joint work with Daniele Angella and Simone Calamai.

Tue, 09 Jun 2015
15:15
L4

(COW seminar) The derived category of moduli spaces of vector bundles on curves

M S Narasimhan
(TIFR Bangalore)
Abstract

Let X be a smooth projective curve (of genus greater than or equal to 2) over C and M the moduli space of vector bundles over X, of rank 2 and with fixed determinant of degree 1.Then the Fourier-Mukai functor from the bounded derived category of coherent sheaves on X to that of M, given by the normalised Poincare bundle, is fully faithful, except (possibly) for hyperelliptic curves of genus 3,4,and 5

 This result is proved by establishing precise vanishing theorems for a family of vector bundles on the moduli space M.

 Results on the deformation  and inversion of Picard bundles (already known) follow from the full faithfulness of the F-M functor

Mon, 08 Jun 2015
14:15
L4

Counting non-simple closed curves on surfaces

Jenya Sapir
(Illinois)
Abstract

We show how to get coarse bounds on the number of (non-simple) closed geodesics on a surface, given upper bounds on both length and self-intersection number. Recent work by Mirzakhani and by Rivin has produced asymptotics for the growth of the number of simple closed curves and curves with one self-intersection (respectively) with respect to length. However, no asymptotics, or even bounds, were previously known for other bounds on self-intersection number. Time permitting, we will discuss some applications of this result

Mon, 11 May 2015
14:15
L4

New G2 holonomy cones and exotic nearly Kähler structures on compact 6-manifolds

Mark Haskins
(Imperial College)
Abstract

A long-standing problem in almost complex geometry has been the question of existence of (complete) inhomogeneous nearly Kahler 6-manifolds. One of the main motivations for this question comes from $G_2$ geometry: the Riemannian cone over a nearly Kahler 6-manifold is a singular space with holonomy $G_2$.

Viewing Euclidean 7-space as the cone over the round 6-sphere, the induced nearly Kahler structure is the standard $G_2$-invariant almost complex structure on the 6-sphere induced by octonionic multiplication. We resolve this problem by proving the existence of exotic (inhomogeneous) nearly Kahler metrics on the 6-sphere and also on the product of two 3-spheres. This is joint work with Lorenzo Foscolo, Stony Brook.

Mon, 27 Apr 2015
14:15
L4

Non-perturbative symplectic manifolds and non-commutative algebras

Philip Boalch
(Orsay)
Abstract

From a geometric viewpoint the irregular Riemann-Hilbert correspondence can be viewed as a machine that takes as input a simple
`additive' symplectic/Poisson manifold and it outputs a more complicated `multiplicative' symplectic/Poisson manifold. In the
simplest nontrivial example it converts the linear Poisson manifold Lie(G)^* into the dual Poisson Lie group G^* (which is the Poisson
manifold underlying the Drinfeld-Jimbo quantum group). This talk will firstly describe some more recent (and more complicated) examples of
such `nonperturbative symplectic/Poisson manifolds', i.e. symplectic spaces of Stokes/monodromy data or `wild character varieties'. Then
the natural generalisations (`fission algebras') of the deformed multiplicative preprojective algebras that occur will be discussed, some
of which are known to be related to Cherednik algebras.

Mon, 09 Mar 2015
14:15
L3

Groupoids, meromorphic connections and divergent series

Brent Pym
(Oxford)
Abstract

A meromorphic connection on a complex curve can be interpreted as a representation of a simple Lie algebroid.  By integrating this Lie algebroid to a Lie groupoid, one obtains a complex surface on which the parallel transport of the connection is globally well-defined and holomorphic, despite the apparent singularities of the corresponding differential equations.  I will describe these groupoids and explain how they can be used to illuminate various aspects of the classical theory of singular ODEs, such as the resummation of divergent series solutions.  (This talk is based on joint work with Marco Gualtieri and Songhao Li.)