Forthcoming events in this series


Thu, 17 Feb 2022

12:00 - 13:00
L1

Connectivity and percolation are two well studied phenomena in random graphs.

Omer Bobrowski
(Technion – Israel Institute of Technology)
Further Information

Omer Bobrowski, an electrical engineer and mathematician, is an Associate Professor in the Viterbi Faculty of Electrical and Computer Engineering at the Technion -

Abstract

Connectivity and percolation are two well studied phenomena in random graphs. 

In this talk we will discuss higher-dimensional analogues of connectivity and percolation that occur in random simplicial complexes.

Simplicial complexes are a natural generalization of graphs that consist of vertices, edges, triangles, tetrahedra, and higher dimensional simplexes.

We will mainly focus on random geometric complexes. These complexes are generated by taking the vertices to be a random point process, and adding simplexes according to their geometric configuration.

Our generalized notions of connectivity and percolation use the language of homology - an algebraic-topological structure representing cycles of different dimensions.

In this talk we will discuss recent results analyzing phase transitions related to these topological phenomena. 

Thu, 10 Feb 2022

12:00 - 13:00
L1

Extracting Autism's Biomarkers in Placenta Using Multiscale Methods

Karamatou A. Yacoubou Djima
(University of Amherst)
Abstract

The placenta is the essential organ of maternal-fetal interactions, where nutrient, oxygen, and waste exchange occur. In recent studies, differences in the morphology of the placental chorionic surface vascular network (PCSVN) have been associated with developmental disorders such as autism. This suggests that the PCSVN could potentially serve as a biomarker for the early diagnosis and treatment of autism. Studying PCSVN features in large cohorts requires a reliable and automated mechanism to extract the vascular networks. In this talk, we present a method for PCSVN extraction. Our algorithm builds upon a directional multiscale mathematical framework based on a combination of shearlets and Laplacian eigenmaps and can isolate vessels with high success in high-contrast images such as those produced in CT scans. 

Thu, 03 Feb 2022

12:00 - 13:00
L1

The role of mechanics in solid tumor growth

Davide Ambrosi
(Politecnico di Torino)
Further Information

I am an applied mathematician interested in revisiting the classical mathematical methods of continuum mechanics to investigate new emerging problems in biology.

Abstract

The experimental evidence of the existence of a feedback between growth and stress in tumors poses challenging questions. First, the rheological properties (the constitutive equations) of aggregates of malignant cells are to identified. Secondly, the feedback law (the "growth law") that relates stress and mitotic and apoptotic rate should be understood. We address these questions on the basis of a theoretical analysis of in vitro experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression.
Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern.
The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.

Thu, 27 Jan 2022

12:00 - 13:00
L1

OCIAM TBC

Luca Tubiana
(University of Trento)
Further Information

Luca Tubiana is Assistant Professor of applied Physics at Università di Trento.

Thu, 20 Jan 2022

12:00 - 13:00
L1

Symmetrically Colored Gaussian Graphical Models with Toric Vanishing Ideals (Jane Coons)

Gillian Grindstaff & Jane Coons
(University of Oxford)
Further Information

Jane Coons is a Supernumerary Teaching Fellow in Mathematics at St John's College. She is a member of OCIAM, and Algebraic Systems Biology research groups. Her research interests are in algebra, geometry and combinatorics, and their applications to statistics and biology.

 

Giliian Grindstaff is a post-doc working in the area of geometric and topological data analysis at the MI.

Abstract

Symmetrically Colored Gaussian Graphical Models with Toric Vanishing Ideals

Jane Coons

Gaussian graphical models are multivariate Gaussian statistical models in which a graph encodes conditional independence relations among the random variables. Adding colors to this graph allows us to describe situations where some entries in the concentration matrices in the model are assumed to be equal. In this talk, we focus on RCOP models, in which this coloring is obtained from the orbits of a subgroup of the automorphism group of the underlying graph. We show that when the underlying block graph is a one-clique-sum of complete graphs, the Zariski closure of the set of concentration matrices of an RCOP model on this graph is a toric variety. We also give a Markov basis for the vanishing ideal of this variety in these cases.

 

Topological persistence for multi-scale terrain profiling and feature detection in drylands hydrology

Gillian Grindstaff

With the growing availability of remote sensing products and computational resources, an increasing amount of landscape data is available, and with it, increasing demand for automated feature detection and useful morphological summaries. Topological data analysis, and in particular, persistent homology, has been applied successfully to detect landslides and characterize soil pores, but its application to hydrology is currently still limited. We demonstrate how persistent homology of a real-valued function on a two-dimensional domain can be used to summarize critical points and shape in a landscape simultaneously across all scales, and how that data can be used to automatically detect features of hydrological interest, such as: experimental conditions in a rainfall simulator, boundary conditions of landscape evolution models, and earthen berms and stock ponds, placed historically to alter natural runoff patterns in the American southwest.

Thu, 02 Dec 2021

12:00 - 13:00
L3

Mechanical instabilities in slender structures

Davide Riccobelli
(Polytechnic University of Milan)
Further Information

Davide Riccobelli is a researcher in Mathematical Physics at the MOX Laboratory, Dipartimento di Matematica
Politecnico di Milano. His research interests are in the field of Solid Mechanics. He is interested in the mathematical and physical modelling of biological tissues and soft active materials. You can read his work here.

Abstract

 In this talk, we show some recent results related to the study of mechanical instabilities in slender structures. First, we propose a model of metamaterial sheets inspired by the pellicle of Euglenids, unicellular organisms capable of swimming due to their ability of changing their shape. These structures are composed of interlocking elastic rods which can freely slide along their edges. We characterize the kinematics and the mechanics of these structures using the special Cosserat theory of rods and by assuming axisymmetric deformations of the tubular assembly. We also characterize the mechanics of a single elastic beam constrained to smoothly slide along a rigid support, where the distance between the rod midline and the constraint is fixed and finite. In the presence of a straight support, the rod can deform into shapes exhibiting helices and perversions, namely transition zones connecting together two helices with opposite chirality.

Finally, we develop a mathematical model of damaged axons based on the theory of continuum mechanics and nonlinear elasticity. In several pathological conditions, such as coronavirus infections, multiple sclerosis, Alzheimer's and Parkinson's diseases, the physiological shape of axons is altered and a periodic sequence of bulges appears. The axon is described as a cylinder composed of an inner passive part, called axoplasm, and an outer active cortex, composed mainly of F-actin and able to contract thanks to myosin-II motors. Through a linear stability analysis, we show that, as the shear modulus of the axoplasm diminishes due to the disruption of the cytoskeleton, the active contraction of the cortex makes the cylindrical configuration unstable to axisymmetric perturbations, leading to a beading pattern.

Thu, 25 Nov 2021

12:00 - 13:00
L3

Comparison of mathematical models by representation as simplicial complexes

Sean Vittadello
(University of Melbourne)
Further Information

Sean Vittadello joined the Theoretical Systems Biology Group at The University of Melbourne as a Postdoctoral Research Fellow in April 2020. His research interests are broadly in the study of biological systems with mathematics, using both analytical and algebraic techniques.

Abstract

The complexity of biological systems necessitates that we develop mathematical models to further our understanding of these systems. Mathematical models of these systems are generally based on heterogeneous sets of experimental data, resulting in a seemingly heterogeneous collection of models that ostensibly represent the same system. To understand the system, and to reveal underlying design principles, we therefore need to understand how the different models are related to each other with a view to obtaining a unified mathematical description. This goal is complicated by the number of distinct mathematical formalisms that may be employed to represent the same system, making direct comparison of the models very difficult. In this talk I will discuss two general methodologies, namely comparison by distance and comparison by equivalence, that allow us to compare model structures in a systematic way by representing models as labelled simplicial complexes. The distance can be obtained either directly from the simplicial complexes, or from the persistence intervals obtained by employing persistent homology with a flat filtration. Model equivalence is used to determine the conceptual similarity of models and can be automated by using group actions on the simplicial complexes. We apply our methodology for model comparison to demonstrate a particular equivalence between a positional-information model and a Turing-pattern model from developmental biology, which constitutes a novel observation for two classes of models that were previously regarded as unrelated. We also discuss an alternative framework for model comparison by representing models as groups, which allows for the application of group-theoretic techniques within our model comparison methodology.

Thu, 18 Nov 2021

12:00 - 13:00
L3

IAM Seminar (TBC)

Hélène de Maleprade
(Sorbonne Jean Le Rond d’Alembert Lab)
Further Information

Hélène de Maleprade is maîtresse de conférence (assistant professor) at Sorbonne Université, in the Institut Jean Le Rond ∂'Alembert, in Paris. Her research focus is now on the swimming of micro-organisms in complex environments inspired by pollution, using soft matter.

You can read her work here.

Abstract

Microscopic green algae show great diversity in structural complexity, and successfully evolved efficient swimming strategies at low Reynolds numbers. Gonium is one of the simplest multicellular algae, with only 16 cells arranged in a flat plate. If the swimming of unicellular organisms, like Chlamydomonas, is nowadays widely studied, it is less clear how a colony made of independent Chlamydomonas-like cells performs coordinated motion. This simple algae is therefore a key organism to model the evolution from single-celled to multicellular locomotion.

In the absence of central communication, how can each cell adapt its individual photoresponse to efficiently reorient the whole algae? How crucial is the distinctive Gonium squared structure?

In this talk, I will present experiments investigating the shape and the phototactic swimming of Gonium, using trajectory tracking and micro-pipette techniques. I will explain our model linking the individual flagella response to the colony trajectory. This eventually emphasises the importance of biological noise for efficient swimming.

Fri, 12 Nov 2021

15:00 - 16:00
Virtual

Stable ranks for data analysis

Professor Martina Scolamiero
(KTH Royal Institute of Technology)
Abstract

Hierarchical stabilisation, allows us to define topological invariants for data starting from metrics to compare persistence modules. In this talk I will highlight the variety of metrics that can be constructed in an axiomatic way, via so called Noise Systems. The focus will then be on one invariant obtained through hierarchical stabilisation, the Stable Rank, which the TDA group at KTH has been studying in the last years. In particular I will address the problem of using this invariant on noisy and heterogeneous data. Lastly, I will illustrate the use of stable ranks on real data within a project on microglia morphology description, in collaboration with S. Siegert’s group, K. Hess and L. Kanari. 

Thu, 11 Nov 2021

12:00 - 13:00
L3

(Timms) Simplified battery models via homogenisation

Travis Thompson & Robert Timms
(University of Oxford)
Further Information

Travis Thompson and Robert Timms are both OCIAM members. Travis is a post-doc working with Professor Alain Goriely in the Mathematics & Mechanics of Brain Trauma group. Robert Timms is a post-doc whose research focuses on the Mathematical Modelling of Batteries.

Abstract

 Mathematics for the mind: network dynamical systems for neurodegenerative disease pathology

Travis Thompson

Can mathematics understand neurodegenerative diseases?  The modern medical perspective on neurological diseases has evolved, slowly, since the 20th century but recent breakthroughs in medical imaging have quickly transformed medicine into a quantitative science.  Today, mathematical modeling and scientific computing allow us to go farther than observation alone.  With the help of  computing, experimental and data-informed mathematical models are leading to new clinical insights into how neurodegenerative diseases, such as Alzheimer's disease, may develop in the human brain.  In this talk, I will overview my work in the construction, analysis and solution of data and clinically-driven mathematical models related to AD pathology.  We will see that mathematical modeling and scientific computing are indeed indispensible for cultivating a data-informed understanding of the brain, AD and for developing potential treatments.

 

___________________________________________________________________________________________________

Simplified battery models via homogenisation  

Robert Timms

Lithium-ion batteries (LIBs) are one of the most popular forms of energy storage for many modern devices, with applications ranging from portable electronics to electric vehicles. Improving both the performance and lifetime of LIBs by design changes that increase capacity, reduce losses and delay degradation effects is a key engineering challenge. Mathematical modelling is an invaluable tool for tackling this challenge: accurate and efficient models play a key role in the design, management, and safe operation of batteries. Models of batteries span many length scales, ranging from atomistic models that may be used to predict the rate of diffusion of lithium within the active material particles that make up the electrodes, right through to models that describe the behaviour of the thousands of cells that make up a battery pack in an electric vehicle. Homogenisation can be used to “bridge the gap” between these disparate length scales, and allows us to develop computationally efficient models suitable for optimising cell design.

Thu, 04 Nov 2021

12:00 - 13:00
L3

Active Matter and Transport in Living Cells

Mike Shelley
(Courant Institute of Mathematical Sciences)
Further Information
Mike Shelley is Lilian and George Lyttle Professor of Applied Mathematics & Professor of Mathematics, Neural Science, and Mechanical Engineering, and Co-Director of the Applied Mathematics Laboratory. He is also Director of the Center for Computational Biology, and Group Leader of Biophysical ModelingThe Flatiron Institute, Simons Foundation
Abstract

The organized movement of intracellular material is part of the functioning of cells and the development of organisms. These flows can arise from the action of molecular machines on the flexible, and often transitory, scaffoldings of the cell. Understanding phenomena in this realm has necessitated the development of new simulation tools, and of new coarse-grained mathematical models to analyze and simulate. In that context, I'll discuss how a symmetry-breaking "swirling" instability of a motor-laden cytoskeleton may be an important part of the development of an oocyte, modeling active material in the spindle, and what models of active, immersed polymers tell us about chromatin dynamics in the nucleus.

Thu, 28 Oct 2021

12:00 - 13:00
L3

Active Matter and Transport in Living Cells

Camille Duprat
(LadHyX Ecole Polytechnique)
Further Information

Camille is mostly interested in problems involving the coupling of capillary-driven and low Reynolds number flows and elastic structures, especially from an experimental point of view.

Publications can be found here

Abstract

The organized movement of intracellular material is part of the functioning of cells and the development of organisms. These flows can arise from the action of molecular machines on the flexible, and often transitory, scaffoldings of the cell. Understanding phenomena in this realm has necessitated the development of new simulation tools, and of new coarse-grained mathematical models to analyze and simulate. In that context, I'll discuss how a symmetry-breaking "swirling" instability of a motor-laden cytoskeleton may be an important part of the development of an oocyte, modeling active material in the spindle, and what models of active, immersed polymers tell us about chromatin dynamics in the nucleus.

Thu, 21 Oct 2021

12:00 - 13:00
L3

Knotting in proteins and other open curves

Eric Rawdon
(University of St. Thomas)
Further Information

Eric Rawdon is a Professor in Mathematics & Data Analytics at the University of St. Thomas, Minnesota.

Research interests

Physical knot theory

Publications

Please see google scholar

Abstract

Some proteins (in their folded form) are classified as being knotted.

The function of the knotting is mysterious since knotting seemingly

would make the folding process unnecessarily complicated.  To

function, proteins need to fold quickly and reproducibly, and

misfolding can have catastrophic results.  For example, Mad Cow

disease and the human analog, Creutzfeldt-Jakob disease, come from

misfolded proteins.

 

Traditionally, knotting is only defined for closed curves, where the

topology is trapped in the loop.  However, proteins have free ends, as

well as most of the objects that humans consider as being knotted

(like shoelaces and strings of lights).  Defining knotting in open

curves is tricky and ambiguous.  We consider some definitions of

knotting in open curves and see how one of these definitions is used

to characterize the knotting in proteins.

Thu, 14 Oct 2021

12:00 - 13:00
L5

Dynamics Problems Discovered Off The Beaten Research Path

Oliver O'Reilly
((UC Berkeley))
Further Information

Oliver M. O’Reilly is a professor in the Department of Mechanical Engineering and Interim Vice Provost for Undergraduate Education at the University of California at Berkeley. 

Research interests:

Dynamics, Vibrations, Continuum Mechanics

Key publications:

To view a list of Professor O’Reilly’s publications, please visit the Dynamics Lab website.

Abstract

In this talk, I will discuss a wide range of mechanical systems,
including Hoberman’s sphere, Euler’s disk, a sliding cylinder, the
Dynabee, BB-8, and Littlewood’s hoop, and the research they inspired.
Studies of the dynamics of the cylinder ultimately led to a startup
company while studying Euler’s disk led to sponsored research with a
well-known motorcycle company.


This talk is primarily based on research performed with a number of
former students over the past three decades. including Prithvi Akella,
Antonio Bronars, Christopher Daily-Diamond, Evan Hemingway, Theresa
Honein, Patrick Kessler, Nathaniel Goldberg, Christine Gregg, Alyssa
Novelia, and Peter Varadi over the past three decades.

Thu, 17 Jun 2021

13:00 - 14:00
Virtual

Modulation of synchronization in neural networks by a slowly varying ionic current

Sue Ann Campbell
(University of Waterloo)
Further Information

Synchronized activity of neurons is important for many aspects of brain function. Synchronization is affected by both network-level parameters, such as connectivity between neurons, and neuron-level parameters, such as firing rate. Many of these parameters are not static but may vary slowly in time. In this talk we focus on neuron-level parameters. Our work centres on the neurotransmitter acetylcholine, which has been shown to modulate the firing properties of several types of neurons through its affect on potassium currents such as the muscarine-sensitive M-current.  In the brain, levels of acetylcholine change with activity.  For example, acetylcholine is higher during waking and REM sleep and lower during slow wave sleep. We will show how the M-current affects the bifurcation structure of a generic conductance-based neural model and how this determines synchronization properties of the model.  We then use phase-model analysis to study the effect of a slowly varying M-current on synchronization.  This is joint work with Victoria Booth, Xueying Wang and Isam Al-Darbasah.

Abstract

Synchronized activity of neurons is important for many aspects of brain function. Synchronization is affected by both network-level parameters, such as connectivity between neurons, and neuron-level parameters, such as firing rate. Many of these parameters are not static but may vary slowly in time. In this talk we focus on neuron-level parameters. Our work centres on the neurotransmitter acetylcholine, which has been shown to modulate the firing properties of several types of neurons through its affect on potassium currents such as the muscarine-sensitive M-current.  In the brain, levels of acetylcholine change with activity.  For example, acetylcholine is higher during waking and REM sleep and lower during slow wave sleep. We will show how the M-current affects the bifurcation structure of a generic conductance-based neural model and how this determines synchronization properties of the model.  We then use phase-model analysis to study the effect of a slowly varying M-current on synchronization.  This is joint work with Victoria Booth, Xueying Wang and Isam Al-Darbasah

Thu, 10 Jun 2021

13:00 - 14:00
Virtual

Dynamic Fluid-Solid Interactions at the Capillary Scale

Daniel Harris
(Brown University)
Abstract

Understanding the motion of small bodies at a fluid interface has relevance to a range of natural systems and technological applications. In this talk, we discuss two systems where capillarity and fluid inertia govern the dynamics of millimetric particles at a fluid interface.

In the first part, we present a study of superhydrophobic spheres impacting a quiescent water bath.  Under certain conditions particles may rebound completely from the interface - an outcome we characterize in detail through a synthesis of experiments, modeling, and direct numerical simulation.  In the second half, we introduce a system wherein millimetric disks trapped at a fluid interface are vertically oscillated and spontaneously self-propel.  Such "capillary surfers" interact with each other via their collective wavefield and self-assemble into a myriad of cooperative dynamic states.  Our experimental observations are well captured by a first theoretical model for their dynamics, laying the foundation for future investigations of this highly tunable active system.

Thu, 03 Jun 2021

12:00 - 13:00
Virtual

Surfactants in drop-on-demand inkjet printing (Antonopoulou). An optic ray theory for nerve durotaxis (Oliveri).

Eva Antonopoulou & Hadrien Olivieri
(Mathematical Institute (University of Oxford))
Abstract

Eva Antonopoulou

Surfactants in drop-on-demand inkjet printing

The rapid development of new applications for inkjet printing and increasing complexity of the inks has created a demand for in silico optimisation of the ink jetting performance. Surfactants are often added to aqueous inks to modify the surface tension. However, the time-scales for drop formation in inkjet printing are short compared to the time-scales of the surfactant diffusion resulting a non-uniform surfactant distribution along the interface leading to surface tension gradients. We present both experiments and numerical simulations of inkjet break-up and drop formation in the presence of surfactants investigating both the surfactant transport on the interface and the influence of Marangoni forces on break-up dynamics. The numerical simulations were conducted using a modified version of the Lagrangian finite element developed by our previous work by including the solution for the transport equation for the surfactants over the free surface. During the initial phase of a “pull-push-pull” drive waveform, surfactants are concentrated at the front of the main drop with the trailing ligament being almost surfactant free. The resulting Marangoni stresses act to delay and can even prevent the break-off of the main drop from the ligament. We also examine and present some initial results on the effects of surfactants on the shape oscillations  of the main drop. Although there is little change to the oscillation frequency, the presence of surfactants significantly increases the rate of decay due to the rigidification of the surface, by modifying the internal flow within the droplet and enhancing the viscous dissipation.

Hadrien Oliveri

An optic ray theory for nerve durotaxis

During the development of the nervous system, neurons extend bundles of axons that grow and meet other neurons to form the neuronal network. Robust guidance mechanisms are needed for these bundles to migrate and reach their functional target. Directional information depends on external cues such as chemical or mechanical gradients. Unlike chemotaxis that has been extensively studied, the role and mechanism of durotaxis, the directed response to variations in substrate rigidity, remain unclear. We model bundle migration and guidance by rigidity gradients by using the theory of morphoelastic rods. We show that at a rigidity interface, the motion of axon bundles follows a simple behavior analogous to optic ray theory and obeys Snell’s law for refraction and reflection. We use this powerful analogy to demonstrate that axons can be guided by the equivalent of optical lenses and fibers created by regions of different stiffnesses.

Thu, 27 May 2021

12:00 - 13:00
Virtual

Elastocapillary singularities in wetting & creasing

Jacco Snoeijer
(University of Twente)
Abstract

Soft elastic interfaces can strongly deform under the influence of external forces, and can even exhibit elastic singularities. Here we discuss two cases where such singularities occur. First, we describe surface creases that form under compression (or swelling) of an elastic medium. Second, we consider the elastocapillary ridges that form when a soft substrate is wetted by a liquid drop. Analytical descriptions are presented and compared to experiments. We reveal that, like for liquid interfaces, the surface tension of the solid is a key factor in shaping the surface, and determines the nature of the singularity.

Thu, 20 May 2021

12:00 - 13:00
Virtual

Next generation mesoscopic models for neural activity

Áine Byrne
(University College Dublin)
Abstract

The Wilson–Cowan population model of neural activity has greatly influenced our understanding of the mechanisms for the generation of brain rhythms and the emergence of structured brain activity. As well as the many insights that have been obtained from its mathematical analysis, it is now widely used in the computational neuroscience community for building large scale in silico brain networks that can incorporate the increasing amount of knowledge from the Human Connectome Project. In this talk, I will introduce a new neural population model in the spirit of that originally developed by Wilson and Cowan, albeit with the added advantage that it can account for the phenomena of event related synchronisation and de-synchronisation. This derived mean field model provides a dynamic description for the evolution of synchrony, as measured by the Kuramoto order parameter, in a large population of quadratic integrate-and-fire model neurons. As in the original Wilson–Cowan framework, the population firing rate is at the heart of our new model; however, in a significant departure from the sigmoidal firing rate function approach, the population firing rate is now obtained as a real-valued function of the complex valued population synchrony measure. To highlight the usefulness of this next generation Wilson–Cowan style model I will show how it can be deployed in a number of neurobiological contexts, providing understanding of the changes in power-spectra observed in EEG/MEG neuroimaging studies of motor-cortex during movement, insights into patterns of functional-connectivity observed during rest and their disruption by transcranial magnetic stimulation, and to describe wave propagation across cortex.

Thu, 13 May 2021

12:00 - 13:00
Virtual

Optimal electrostatic control of fluid films

Alex Wray
(Strathclyde)
Abstract

Controlling film flows has long been a central target for fluid dynamicists due to its numerous applications, in fields from heat exchangers to biochemical recovery, to semiconductor manufacture. However, despite its significance in the literature, most analyses have focussed on the “forward” problem: what effect a given control has on the flow. Often these problems are already complex, incorporating the - generally multiphysical - interplay of hydrodynamic phenomena with the mechanism of control. Indeed, many systems still defy meaningful agreement between models and experiments.
 
The inverse problem - determining a suitable control scheme for producing a specified flow - is considerably harder, and much more computationally expensive (often involving thousands of calculations of the forward problem). Performing such calculations for the full Navier-Stokes problem is generally prohibitive.

We examine the use of electric fields as a control mechanism. Solving the forward problem involves deriving a low-order model that turns out to be accurate even deep into the shortwave regime. We show that the weakly-nonlinear problem is Kuramoto-Sivashinsky-like, allowing for greater analytical traction. The fully nonlinear problem can be solved numerically via the use of a rapid solver, enabling solution of both the forward and adjoint problems on sub-second timescales, allowing for both terminal and regulation optimal control studies to be implemented. Finally, we examine the feasibility of controlling direct numerical simulations using these techniques.

Thu, 06 May 2021

12:00 - 13:30
Virtual

Bio-Inspired Noise Control

Lorna Ayton
(Cambridge)
Abstract

Noise is generated in an aerodynamic setting when flow turbulence encounters a structural edge, such as at the sharp trailing edge of an aerofoil. The generation of this noise is unavoidable, however this talk addresses various ways in which it may be mitigated through altering the design of the edge. The alterations are inspired by natural silent fliers: owls. A short review of how trailing-edge noise is modelled will be given, followed by a discussion of two independent adaptations; serrations, and porosity. The mathematical impacts of the adaptations to the basic trailing-edge model will be presented, along with the physical implications they have on noise generation and control.

Thu, 29 Apr 2021

12:00 - 13:00
Virtual

Bubble propagation in modified Hele-Shaw channels

Alice Thompson
(Manchester)
Abstract

The propagation of a deformable air finger or bubble into a fluid-filled channel with an imposed pressure gradient was first studied by Saffman and Taylor. Assuming large aspect ratio channels, the flow can be depth-averaged and the free-boundary problem for steady propagation solved by conformal mapping. Famously, at zero surface tension, fingers of any width may exist, but the inclusion of vanishingly small surface tension selects symmetric fingers of discrete finger widths. At finite surface tension, Vanden-Broeck later showed that other families of 'exotic' states exist, but these states are all linearly unstable.

In this talk, I will discuss the related problem of air bubble propagation into rigid channels with axially-uniform, but non-rectangular, cross-sections. By including a centred constriction in the channel, multiple modes of propagation can be stabilised, including symmetric, asymmetric and oscillatory states, with a correspondingly rich bifurcation structure. These phenomena can be predicted via depth-averaged modelling, and also observed in our experiments, with quantitative agreement between the two in appropriate parameter regimes. This agreement provides insight into the physical mechanisms underlying the observed behaviour. I will outline our efforts to understand how the system dynamics is affected by the presence of nearby unstable solution branches acting as edge states. Finally, I will discuss how feedback control and control-based continuation could be used for direct experimental observation of stable or unstable modes.

Thu, 11 Mar 2021

12:30 - 13:30
Virtual

Towards Living Synthetic Matter

Michael Brenner
(Harvard)
Further Information

This final OCIAM seminar of the term takes place slightly later than usual at 12:30 

Abstract

Biological systems provide an inspiration for creating a new paradigm
for materials synthesis. What would it take to enable inanimate material
to acquire the properties of living things? A key difference between
living and synthetic materials is that the former are programmed to
behave as they do, through interactions, energy consumption and so
forth. The nature of the program is the result of billions of years of
evolution. Understanding and emulating this program in materials that
are synthesizable in the lab is a grand challenge. At its core is an
optimization problem: how do we choose the properties of material
components that we can create in the lab to carry out complex reactions?
I will discuss our (not-yet-terribly-successful efforts)  to date to
address this problem, by designing both equiliibrium and kinetic 
properties of materials, using a combination of statistical mechanics,
kinetic modeling and ideas from machine learning.

Thu, 04 Mar 2021

12:00 - 13:00
Virtual

The Power of Film

John Wettlaufer
(Yale/Nordita)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

The pandemic has had a deleterious influence on the Hollywood film
industry.  Fortunately,  however, the thin film industry continues to
flourish.  A host of effects are responsible for confined liquids
exhibiting properties that differ from their bulk counterparts. For
example, the dominant polarization and surface forces across a layered
system can control the material behavior on length scales vastly larger
than the film thickness.  This basic class of phenomena, wherein
volume-volume interactions create large pressures, are at play in,
amongst many other settings, wetting, biomaterials, ceramics, colloids,
and tribology.  When the films so created involve phase change and are
present in disequilibrium, the forces can be so large that they destroy
the setting that allowed them to form in the first place. I will
describe the connection between such films in a semi-traditional wetting
dynamics geometry and active brownian dynamics.  I then explore their
power to explain a wide range of processes from materials- to astro- to
geo-science.

Thu, 25 Feb 2021

12:00 - 13:00
Virtual

Asymptotic analysis of phase-field models

Andreas Muench
(University of Oxford)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

We study the evolution of solid surfaces and pattern formation by
surface diffusion. Phase field models with degenerate mobilities are
frequently used to model such phenomena, and are validated by
investigating their sharp interface limits. We demonstrate by a careful
asymptotic analysis involving the matching of exponential terms that a
certain combination of degenerate mobility and a double well potential
leads to a combination of both surface and non-linear bulk diffusion to
leading order. If time permits, we will discuss implications and extensions.