Forthcoming events in this series


Tue, 30 Oct 2012

13:15 - 13:45
DH 1st floor SR

Freezing of Foods: High-Pressure Shift Freezing / Growth and coarsening of ice crystals

Nadia Smith
Abstract

High-pressure freezing processes are a novel emerging technology in food processing,
offering significant improvements to the quality of frozen foods. To be able to simulate
plateau times and thermal history under different conditions, a generalized enthalpy
model of the high-pressure shift freezing process is presented. The model includes
the effects of pressure on conservation of enthalpy and incorporates the freezing point
depression of non-dilute food samples. In addition, the significant heat-transfer effects of
convection in the pressurizing medium are accounted for by solving the two-dimensional
Navier–Stokes equations.
The next question is: is high-pressure shift freezing good also in the long run?
A growth and coarsening model for ice crystals in a very simple food system will be discussed.

Tue, 16 Oct 2012
13:15
DH 1st floor SR

Liquid snowflake formation in superheated ice

Matt Hennessy
Abstract

When ice is raised to a temperature above its usual melting temperature
of 273 K, small cylindrical discs of water form within the bulk of the
ice. Subsequent internal melting of the ice causes these liquid discs to
grow radially outwards. However, many experimentalists have observed
that the circular interface of these discs is unstable and eventually
the liquid discs turn into beautiful shapes that resemble flowers or
snowflakes. As a result of their shape, these liquid figures are often
called liquid snowflakes. In this talk I'll discuss a simple
mathematical model of liquid snowflake formation and I'll show how a
combination of analytical and numerical methods can yield much insight
into the dynamics which govern their growth.

Tue, 12 Jun 2012
13:15
DH 1st floor SR

Hermite functions and hypercollisions in the simulation of nuclear fusion plasmas

Joseph Parker
Abstract

 Nuclear fusion offers the prospect of abundant clean energy production, but the physical and engineering challenges are very great. In nuclear fusion reactors, the fuel is in the form of a plasma (charged gas) which is confined at high temperature and density using a toroidal magnetic field. This configuration is susceptible to turbulence, which transports heat out of the plasma and prevents fusion. It is believed that rotating the plasma suppresses turbulence, but experiments are expensive and even modest numerical simulation requires hundreds of thousands of CPU hours. We present a numerical technique for one of the five phase-space dimensions that both improves the accuracy of the calculation and greatly reduces the resolution required.

Tue, 29 May 2012
13:15
DH 1st floor SR

Lambda calculus and database queries

Huy Vu
Abstract

 Higher-order transformations are ubiquitous within data management. In relational databases, higher-order queries appear in numerous aspects including query rewriting and query specification. In XML databases, higher-order functions are natural due to the close connection of XML query languages with functional programming. We investigate higher-order query languages that combine higher- order transformations with ordinary database query languages. We define higher-order query languages based on Relational Algebra and XQuery. We also study basic problems for these query languages including evaluation, containment, and type inference. We show that even though evaluating these higher-order query languages is non-elementary, there are subclasses that are polynomially reducible to evaluation for ordinary query languages.

Tue, 15 May 2012
13:15
DH 1st floor SR

Mathematical Modelling and Numerical Simulation of Tissue Engineered Bone

Katie Leonard
Abstract

 The use of tissue engineered implants could facilitate unions in situations where there is loss of bone or non-union, thereby increasing healing time, reducing the risk of infections and hence reducing morbidity. Currently engineered bone tissue is not of sufficient quality to be used in widespread clinical practice.  In order to improve experimental design, and thereby the quality of the tissue-constructs, the underlying biological processes involved need to be better understood. In conjunction with experimentalists, we consider the effect hydrodynamic pressure has on the development and regulation of bone, in a bioreactor designed specifically for this purpose. To answer the experimentalists’ specific questions, we have developed two separate models; in this talk I will present one of these, a multiphase partial differential equation model to describe the evolution of the cells, extracellular matrix that they deposit, the culture medium and the scaffold.  The model is then solved using the finite element method using the deal.II library.

Tue, 01 May 2012
13:15
DH 1st floor SR

Overlapping Communities and Consensus Clustering

Lucas Jeub
Abstract

With the advent of powerful computers and the internet, our ability to collect and store large amounts of data has improved tremendously over the past decades. As a result, methods for extracting useful information from these large datasets have gained in importance. In many cases the data can be conveniently represented as a network, where the nodes are entities of interest and the edges encode the relationships between them. Community detection aims to identify sets of nodes that are more densely connected internally than to the rest of the network. Many popular methods for partitioning a network into communities rely on heuristically optimising a quality function. This approach can run into problems for large networks, as the quality function often becomes near degenerate with many near optimal partitions that can potentially be quite different from each other. In this talk I will show that this near degeneracy, rather than being a severe problem, can potentially allow us to extract additional information

Tue, 06 Mar 2012
13:30
DH 1st floor SR

Zonal jets on Jupiter as modelled by the quasigeostrophic limit of the thermal shallow water equation

Emma Warneford
(OCIAM)
Abstract

Large-scale zonal jets are observed in a wide range of geophysical and astrophysical flows; most strikingly in the atmospheres of the Jovian gas giant planets. Jupiter's upper atmosphere is highly turbulent, with many small vortices, and strong westerly winds at the equator. We consider the thermal shallow water equations as a model for Jupiter's upper atmosphere. Originally proposed for the terrestrial atmosphere and tropical oceans, this model extends the conventional shallow water equations by allowing horizontal temperature variations with a modified Newtonian cooling for the temperature field. We perform numerical simulations that reproduce many of the key features of Jupiter’s upper atmosphere. However, the simulations take a long time to run because their time step is severely constrained by the inertia-gravity wave speed. We filter out the inertia-gravity waves by forming the quasigeostrophic limit, which describes the rapidly rotating (small Rossby number) regime. We also show that the quasigeostrophic energy equation is the quasigeostrophic limit of the thermal shallow water pseudo-energy equation, analogous to the derivation of the acoustic energy equation from gas dynamics. We perform numerical simulations of the quasigeostrophic equations, which again reproduce many of the key features of Jupiter’s upper atmosphere. We gain substantial performance increases by running these simulations on graphical processing units (GPUs).

Tue, 21 Feb 2012
13:30
DH 1st floor SR

Limit Order Books

Martin Gould
(OCIAM)
Abstract

 Determining the price at which to conduct a trade is an age-old problem. The first (albeit primitive) pricing mechanism dates back to the Neolithic era, when people met in physical proximity in order to agree upon mutually beneficial exchanges of goods and services, and over time increasingly complex mechanisms have played a role in determining prices. In the highly competitive and relentlessly fast-paced markets of today’s financial world, it is the limit order book that matches buyers and sellers to trade at an agreed price in more than half of the world’s markets.  In this talk I will describe the limit order book trade-matching mechanism, and explain how the extra flexibility it provides has vastly impacted the problem of how a market participant should optimally behave in a given set of circumstances.

Tue, 07 Feb 2012
13:30
DH 1st floor SR

Singularity Methods in Stokes Flow: from Spheres to Sperm!

Mark Curtis
(OCCAM)
Abstract

 When modelling the motion of a sperm cell in the female reproductive tract, the Reynolds number is found to be very small, thus allowing the nonlinear Navier-Stokes equations to simplify to the linear Stokes equations stating that pressure, viscous and body forces balance each other at any instant in time. A wide range of analytical techniques can be applied to investigate the Stokes flow past a moving body. In this talk, we introduce various Stokes flow singularities and illustrate how they can provide a handy starting point (ansatz) when trying to determine the form of the flow field around certain bodies, from simple translating spheres to beating sperm tails.

Tue, 24 Jan 2012
13:30
DH 1st floor SR

Quantile forecasting of wind power using variability indices

Georgios Anastasiades
(OCIAM)
Abstract

Quantile forecasting of wind power using variability indices
Abstract: Wind power forecasting techniques have received substantial attention recently due to the increasing penetration of wind energy in national power systems.  While the initial focus has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. Using four years of wind power data from three wind farms in Denmark, we develop quantile regression models to generate short-term probabilistic forecasts from 15 minutes up to six hours ahead. More specifically, we investigate the potential of using various variability indices as explanatory variables in order to include the influence of changing weather regimes. These indices are extracted from the same  wind power series and optimized specifically for each quantile. The forecasting performance of this approach is compared with that of some benchmark models. Our results demonstrate that variability indices can increase the overall skill of the forecasts and that the level of improvement depends on the specific quantile.

Tue, 29 Nov 2011
13:15
DH 3rd floor SR

Turbidity current dynamics - modelling sediment avalanches in the ocean

Gemma Fay
(Oxford Centre for Industrial and Applied Mathematics)
Abstract

Turbidity currents are fast-moving streams of sediment in the ocean 
which have the power to erode the sea floor and damage man-made
infrastructure anchored to the bed. They can travel for hundreds of
kilometres from the continental shelf to the deep ocean, but they are
unpredictable and can occur randomly without much warning making them
hard to observe and measure. Our main aim is to determine the distance
downstream at which the current will become extinct. We consider the
fluid model of Parker et al. [1986] and derive a simple shallow-water
description of the current which we examine numerically and analytically
to identify supercritical and subcritical flow regimes. We then focus on
the solution of the complete model and provide a new description of the
turbulent kinetic energy. This extension of the model involves switching
from a turbulent to laminar flow regime and provides an improved
description of the extinction process. 

Fri, 18 Nov 2011
15:30
DH 1st floor SR

Does Mr. Darcy hold the key to your (new) heart? Porous tissue growth in a rotating nutrient-filled bioreactor.

Mohit Dalwadi
(Oxford Centre for Industrial and Applied Mathematics)
Abstract

 A common way to replace body tissue is via donors, but as the world population is ageing at an unprecedented rate there will be an even smaller supply to demand ratio for replacement parts than currently exists. Tissue engineering is a process in which damaged body tissue is repaired or replaced via the engineering of artificial tissues. We consider one type of this; a two-phase flow through a rotating high-aspect ratio vessel (HARV) bioreactor that contains a porous tissue construct. We extend the work of Cummings and Waters [2007], who considered a solid tissue construct, by considering flow through the porous construct described by a rotating form of Darcy's equations. By simplifying the equations and changing to bipolar variables, we can produce analytic results for the fluid flow through the system for a given construct trajectory. It is possible to calculate the trajectory numerically and couple this with the fluid flow to produce a full description of the flow behaviour. Finally, coupling with the numerical result for the tissue trajectory, we can also analytically calculate the particle paths for the flow which will lead to being able to calculate the spatial and temporal nutrient density.

Tue, 01 Nov 2011
13:15
DH 1st floor SR

Non-uniqueness in a minimal model for cell motility

Laura Gallimore
(Oxford Centre for Collaborative Applied Mathematics)
Abstract

Cell motility is a crucial part of many biological processes including wound healing, immunity and embryonic development. The interplay between mechanical forces and biochemical control mechanisms make understanding cell motility a rich and exciting challenge for mathematical modelling. We consider the two-phase, poroviscous, reactive flow framework used in the literature to describe crawling cells and present a stripped down version. Linear stability analysis and numerical simulations provide insight into the onset of polarization of a stationary cell and reveal qualitatively distinct families of travelling wave solutions. The numerical solutions also capture the experimentally observed behaviour that cells crawl fastest when the surface they crawl over is neither too sticky nor too slippy.

Tue, 18 Oct 2011
13:15
DH 1st floor SR

'Non-Newtonian blood flow: a study of fluid transport through the capillaries of the heart'

Amy Smith
(Oxford Centre for Collaborative Applied Mathematics)
Abstract

Motivated by the study of micro-vascular disease, we have been investigating the relationship between the structure of capillary networks and the resulting blood perfusion through the muscular walls of the heart. In order to derive equations describing effective fluid transport, we employ an averaging technique called homogenisation, based on a separation of length scales. We find that the tissue-scale flow is governed by Darcy's Law, whose coefficients we are able to explicitly calculate by averaging the solution of the microscopic capillary-scale equations. By sampling from available data acquired via high-resolution imaging of the coronary capillaries, we automatically construct physiologically-realistic vessel networks on which we then numerically solve our capillary-scale equations. By validating against the explicit solution of Poiseuille flow in a discrete network of vessels, we show that our homogenisation method is indeed able to efficiently capture the averaged flow properties.

Tue, 21 Jun 2011
13:15
DH 1st floor SR

Hydrodynamics and elastodynamics of swimming bacteria

Henry Shum
(Centre for Mathematical Biology)
Abstract

Bacteria are ubiquitous on Earth and perform many vital roles in addition to being responsible for a variety of diseases. Locomotion allows the bacterium to explore the environment to find nutrient-rich locations and is also crucial in the formation of large colonies, known as biofilms, on solid surfaces immersed in the fluid. Many bacteria swim by turning corkscrew-shaped flagella. This can be studied computationally by considering hydrodynamic forces acting on the bacterium as the flagellum rotates. Using a boundary element method to solve the Stokes flow equations, it is found that details of the shape of the cell and flagellum affect both swimming efficiency and attraction of the swimmer towards flat no-slip surfaces. For example, simulations show that relatively small changes in cell elongation or flagellum length could make the difference between an affinity for swimming near surfaces and a repulsion. A new model is introduced for considering elastic behaviour in the bacterial hook that links the flagellum to the motor in the cell body. This model, based on Kirchhoff rod theory, predicts upper and lower bounds on the hook stiffness for effective swimming.

Tue, 07 Jun 2011
13:15
DH 1st floor SR

Modelling Viral Persistence in the Presence of Host Immunity in Chronic HTLV-I Infection

Aarom Lim
(University of Oxford))
Abstract

Human T-lymphotropic virus type I (HTLV-I) is a persistent human retrovirus characterised by a high proviral load and risk of developing ATL, an aggressive blood cancer, or HAM/TSP, a progressive neurological and inflammatory disease. Infected individuals typically mount a large, chronically activated HTLV-I-specific CTL response, yet the virus has developed complex mechanisms to evade host immunity and avoid viral clearance. Moreover, identification of determinants to the development of disease has thus far been elusive.

 This model is based on a recent experimental hypothesis for the persistence of HTLV-I infection and is a direct extension of the model studied by Li and Lim (2011). A four-dimensional system of ordinary differential equations is constructed that describes the dynamic interactions among viral expression, infected target cell activation, and the human immune response. Focussing on the particular roles of viral expression and host immunity in chronic HTLV-I infection offers important insights to viral persistence and pathogenesis.

Tue, 08 Mar 2011
13:15
DH 1st floor SR

Biological Applicability of the Cellular Potts Model

Sophie Kershaw
(Comlab)
Abstract

How best to use the cellular Potts model? This is a boundary dynamic method for computational cell-based modelling, in which evolution of the domain is achieved through a process of free energy minimisation. Historically its roots lie in statistical mechanics, yet in modern day it has been implemented in the study of metallic grain growth, foam coarsening and most recently, biological cells. I shall present examples of its successful application to the Steinberg cell sorting experiments of the early 1960s, before examining the specific case of the colorectal crypt. This scenario highlights the somewhat problematic nuances of the CPM, and provides useful insights into the process of selecting a cell-based framework that is suited to the complex biological tissue of interest.

Tue, 22 Feb 2011
13:15
Gibson Grd floor SR

Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise

Yi Ming Lai
(OCCAM)
Abstract
 We examine several aspects of introducing stochasticity into dynamical systems, with specific applications to modelling
populations of neurons. In particular, we use the example of a interacting
populations of excitatory and inhibitory neurons (E-I networks). As each
network consists of a large but finite number of neurons that fire
stochastically, we can study the effect of this intrinsic noise using a master
equation formulation. In the parameter regime where each E-I network acts as a
limit cycle oscillator, we combine phase reduction and averaging to study the
stationary distribution of phase differences in an ensemble of uncoupled E-I
oscillators, and explore how the intrinsic noise disrupts synchronization due
to a common external noise source.
 
Tue, 25 Jan 2011
13:15
DH 1st floor SR

Human sperm migration: Observation and Theory

Hermes Gadelha
(CMB)
Abstract

Abstract: Flagella and cilia are ubiquitous in biology as a means of motility and critical for male gametes migration in reproduction, to mucociliary clearance in the lung, to the virulence of devastating parasitic pathogens such as the Trypanosomatids, to the filter feeding of the choanoflagellates, which are constitute a critical link in the global food chain. Despite this ubiquity and importance, the details of how the ciliary or flagellar waveform emerges from the underlying mechanics and how the cell, or the environs, may control the beating pattern by regulating the axoneme is far from fully understood. We demonstrate in this talk that mechanics and modelling can be utilised to interpret observations of axonemal dynamics, swimming trajectories and beat patterns for flagellated motility impacts on the science underlying numerous areas of reproductive health, disease and marine ecology. It also highlights that this is a fertile and challenging area of inter-disciplinary research for applied mathematicians and demonstrates the importance of future observational and theoretical studies in understanding the underlying mechanics of these motile cell appendages.

Tue, 30 Nov 2010

13:15 - 13:45
Gibson Grd floor SR

Modelling of the CSF Infusion Test

Almut Eisentrager
(Numerical Analysis Group)
Abstract

In a healthy human brain, cerebrospinal fluid (CSF), a water-like liquid, fills a system of cavities, known as ventricles, inside the brain and also surrounds the brain and spinal cord. Abnormalities in CSF dynamics, such as hydrocephalus, are not uncommon and can be fatal for the patient. We will consider two types of models for the so-called infusion test, during which additional fluid is injected into the CSF space at a constant rate, while measuring the pressure continuously, to get an insight into the CSF dynamics of that patient.

 

In compartment type models, all fluids are lumped into compartments, whose pressure and volume interactions can be modelled with compliances and resistances, equivalent to electric circuits. Since these models have no spatial variation, thus cannot give information such as stresses in the brain tissue, we also consider a model based on the theory of poroelasticity, but including strain-dependent permeability and arterial blood as a second fluid interacting with the CSF only through the porous elastic solid.

Tue, 16 Nov 2010
13:15
DH 1st floor SR

"Exponential Asymptotics and Free-Surface Fluid Flow"

Chris Lustri
(OCIAM)
Abstract

We investigate the behaviour of free-surface waves on time-varying potential flow in the limit as the Froude number becomes small. These waves are exponentially small in the Froude number, and are therefore inaccessible to ordinary asymptotic methods. As such, we demonstrate how exponential asymptotic techniques may be applied to the complexified free surface in order to extract information about the wave behaviour on the free surface, using a Lagrangian form of the potential flow equations. We consider the specific case of time-varying flow over a step, and demonstrate that the results are consistent with the steady state case.

Tue, 02 Nov 2010

13:15 - 13:45
Gibson Grd floor SR

Accurate telemonitoring of Parkinson's disease symptom severity using nonlinear signal processing and statistical machine learning

Athanasios Tsanas
(OCIAM and SAMP)
Abstract

This work demonstrates how we can extract clinically useful patterns

extracted from time series data (speech signals) using nonlinear signal
processing and how to exploit those patterns using robust statistical
machine learning tools, in order to estimate remotely and accurately
average Parkinson's disease symptom severity. 

 

Tue, 19 Oct 2010

13:15 - 13:45
DH 1st floor SR

Fat vs. thin threading approach on GPUs: application to stochastic simulation of chemical reactions

Guido Klingbeil
(Centre for Mathematical Biology)
Abstract

We explore two different threading approaches on a graphics processing
unit (GPU) exploiting two different characteristics of the current GPU
architecture. The fat thread approach tries to minimise data access time
by relying on shared memory and registers potentially sacrificing
parallelism. The thin thread approach maximises parallelism and tries to
hide access latencies. We apply these two approaches to the parallel
stochastic simulation of chemical reaction systems using the stochastic
simulation algorithm (SSA) by Gillespie. In these cases, the proposed
thin thread approach shows comparable performance while eliminating the
limitation of the reaction system's size.

Link to paper: 

http://people.maths.ox.ac.uk/erban/papers/paperCUDA.pdf

Tue, 15 Jun 2010

13:15 - 13:45
DH 3rd floor SR

Uncovering the secrets of 'surface active Agents'

Cara Morgan
(Oxford)
Abstract

Following work done by the 'Oxford Spies' we uncover more secrets of 'surface-active Agents'. In modern-day applications we refer to these agents as surfactants, which are now extensively used in industrial, chemical, biological and domestic applications. Our work focuses on the dynamic behaviour of surfactant and polymer-surfactant mixtures.

In this talk we propose a mathematical model that incorporates the effects of diffusion, advection and reactions to describe the dynamic behaviour of such systems and apply the model to the over-flowing-cylinder experiment (OFC). We solve the governing equations of the model numerically and, by exploiting large parameters in the model, obtain analytical asymptotic solutions for the concentrations of the bulk species in the system. Thus, these solutions uncover secrets of the 'surface-active Agents' and provide an important insight into the system behaviour, predicting the regimes under which we observe phase transitions of the species in the system. Finally, we suggest how our models can be extended to uncover the secrets of more complex systems in the field.

Tue, 01 Jun 2010

13:15 - 13:45
DH 1st floor SR

Towards a Colonic Crypt Model with a Realistic, Deformable Geometry

Sara-Jane Dunn
(Oxford)
Abstract

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide, demanding a response from scientists and clinicians to understand its aetiology and develop effective treatment. CRC is thought to originate via genetic alterations that cause disruption to the cellular dynamics of the crypts of Lieberkűhn, test-tube shaped glands located in both the small and large intestine, which are lined with a monolayer of epithelial cells. It is believed that during colorectal carcinogenesis, dysplastic crypts accumulate mutations that destabilise cell-cell contacts, resulting in crypt buckling and fission. Once weakened, the corrupted structure allows mutated cells to migrate to neighbouring crypts, to break through to the underlying tissue and so aid the growth and malignancy of a tumour. To provide further insight into the tissue-level effects of these genetic mutations, a multi-scale model of the crypt with a realistic, deformable geometry is required. This talk concerns the progress and development of such a model, and its usefulness as a predictive tool to further the understanding of interactions across spatial scales within the context of colorectal cancer.