Forthcoming events in this series


Wed, 20 Jan 2021
10:00
Virtual

Linear Isoperimetric Functions for Surfaces in Hyperbolic Groups

Macarena Arenas
(Cambridge University)
Abstract

One of the main characterisations of word-hyperbolic groups is that they are the groups with a linear isoperimetric function. That is, for a compact 2-complex X, the hyperbolicity of its fundamental group is equivalent to the existence of a linear isoperimetric function for disc diagrams D -->X.
It is likewise known that hyperbolic groups have a linear annular isoperimetric function and a linear homological isoperimetric function. I will talk about these isoperimetric functions, and about a (previously unexplored)  generalisation to all homotopy types of surface diagrams. This is joint work with Dani Wise.

Wed, 02 Dec 2020
10:00
Virtual

Generalizing Hyperbolicity via Local-to-Global Behaviour

Davide Spriano
(University of Oxford)
Abstract

 An important property of a Gromov hyperbolic space is that every path that is locally a quasi-geodesic is globally a quasi-geodesic. A theorem of Gromov states that this is a characterization of hyperbolicity, which means that all the properties of hyperbolic spaces and groups can be traced back to this simple fact. In this talk we generalize this property by considering only Morse quasi-geodesics.

We show that not only does this allow us to consider a much larger class of examples, such as CAT(0) spaces, hierarchically hyperbolic spaces and fundamental groups of 3-manifolds, but also we can effortlessly generalize several results from the theory of hyperbolic groups that were previously unknown in this generality.
 

Wed, 25 Nov 2020
10:00
Virtual

Veering Triangulations, the Teichmüller Polynomial and the Alexander Polynomial

Anna Parlak
(University of Warwick)
Abstract

Veering triangulations are a special class of ideal triangulations with a rather mysterious combinatorial definition. Their importance follows from a deep connection with pseudo-Anosov flows on 3-manifolds. Recently Landry, Minsky and Taylor introduced a polynomial invariant of veering triangulations called the taut polynomial. It is a generalisation of an older invariant, the Teichmüller polynomial, defined by McMullen in 2002.

The aim of my talk is to demonstrate that veering triangulations provide a convenient setup for computations. More precisely, I will use fairly easy arguments to obtain a fairly strong statement which generalises the results of McMullen relating the Teichmüller polynomial to the Alexander polynomial.

I will not assume any prior knowledge on the Alexander polynomial, the Teichmüller polynomial or veering triangulations.

Wed, 18 Nov 2020
16:00
Virtual

Introduction to left-orderable groups and formal languages.

Hang Lu Su
(ICMAT Madrid)
Abstract

 

I will introduce left-orderable groups and discuss constructions and examples of such groups. I will then motivate studying left-orders under the framework of formal languages and discuss some recent results.

Wed, 11 Nov 2020
10:00
Virtual

Extending Leighton's Graph Covering Theorem

Sam Shepherd
(University of Oxford)
Abstract

Leighton's Theorem states that if two finite graphs have a common universal cover then they have a common finite cover. I will explore various ways in which this result can and can't be extended.

Wed, 04 Nov 2020
10:00
Virtual

Is Invariable Generation Hereditary?

Gil Goffer
(Weizmann Institute of Science)
Abstract

I will discuss the notion of invariably generated groups, its importance, and some intuition. I will then present a construction of an invariably generated group that admits an index two subgroup that is not invariably generated. The construction answers questions of Wiegold and of Kantor-Lubotzky-Shalev. This is a joint work with Nir Lazarovich.

Wed, 28 Oct 2020
10:00
Virtual

(Beyond) Quasi-isometric Rigidity of Lattices in Lie Groups

Ido Grayevsky
(University of Oxford)
Abstract

'Quasi-isometric rigidity' in group theory is the slogan for questions of the following nature: let A be some class of groups (e.g. finitely presented groups). Suppose an abstract group H is quasi-isometric to a group in A: does it imply that H is in A? Such statements link the coarse geometry of a group with its algebraic structure. 

 

Much is known in the case A is some class of lattices in a given Lie group. I will present classical results and outline ideas in their proofs, emphasizing the geometric nature of the proofs. I will focus on one key ingredient, the quasi-flat rigidity, and discuss some geometric objects that come into play, such as neutered spaces, asymptotic cones and buildings. I will end the talk with recent developments and possible generalizations of these results and ideas.

Wed, 21 Oct 2020
10:00
Virtual

Algorithms for the Recognition of Primitive Elements in a Free Group

Dario Ascari
(University of Oxford)
Abstract

Primitive elements are elements that are part of a basis for a free group. We present the classical Whitehead algorithm for the recognition of such elements, and discuss the ideas behind the proof. We also present a second algorithm, more recent and completely different in the approach.

Wed, 14 Oct 2020
10:00
Virtual

The Milnor-Wood inequality, and Affine Manifolds

Mehdi Yazdi
(University of Oxford)
Abstract

I will explain what it means for a manifold to have an affine structure and give an introduction to Benzecri's theorem stating that a closed surface admits an affine structure if and only if its Euler characteristic vanishes. I will also talk about an algebraic-topological generalization, due to Milnor and Wood, that bounds the Euler class of a flat circle bundle. No prior familiarity with the concepts is necessary.

Wed, 17 Jun 2020
10:00
Virtual

TBA

Jonathan Fruchter
(University of Oxford)
Wed, 10 Jun 2020
10:00
Virtual

TBA

Mehdi Yazdi
(University of Oxford)
Wed, 03 Jun 2020
10:00
Virtual

An Introduction to Fusion Categories

Thibault Decoppet
(Oxford University)
Abstract

Motivation for the study of fusion categories is twofold: Fusion categories arise in wide array of mathematical subjects, and provide the necessary input for some fascinating topological constructions. We will carefully define what fusion categories are, and give representation theoretic examples. Then, we will explain how fusion categories are inherently finite combinatorial objects. We proceed to construct an example that does not come from group theory. Time permitting, we will go some way towards introducing so-called modular tensor categories.

 

Wed, 27 May 2020
10:00
Virtual

Poincare's Polyhedron Theorem and Applications to Algorithms.

Joe Scull
(University of Oxford)
Abstract

Much progress in the study of 3-manifolds has been made by considering the geometric structures they admit. This is nowhere more true than for 3-manifolds which admit a hyperbolic structure. However, in the land of algorithms a more combinatorial approach is necessary, replacing our charts and isometries with finite simplicial complexes that are defined by a finite amount of data. 

In this talk we'll have a look at how in fact one can combine the two approaches, using the geometry of hyperbolic 3-manifolds to assist in this more combinatorial approach. To do so we'll combine tools from Hyperbolic Geometry, Triangulations, and perhaps suprisingly Polynomial Algebra to find explicit bounds on the runtime of an algorithm for comparing Hyperbolic manifolds.

Wed, 20 May 2020
16:00
Virtual

TBA

Alice Kerr
(Oxford University)
Wed, 13 May 2020
10:00
Virtual

A Mapping Class Group Presentation from Fatgraphs

Adele Jackson
(University of Oxford)
Abstract

The mapping class group of a surface with boundary acts freely and properly discontinuously on the fatgraph complex, which is a contractible cell complex arising from a cell decomposition of Teichmuller space. We will use this action to get a presentation of the mapping class group in terms of fat graphs, and convert this into one in terms of chord diagrams. This chord slide presentation has potential applications to computing bordered Heegaard Floer invariants for open books with disconnected binding.

Wed, 06 May 2020
10:00
Virtual

Revisiting Leighton's Theorem

Daniel Woodhouse
(University of Oxford)
Abstract

Let X_1 and X_2 be finite graphs with isomorphic universal covers.

Leighton's graph covering theorem states that X_1 and X_2 have a common finite cover.

I will discuss recent work generalizing this theorem and how myself and Sam Shepherd have been applying it to rigidity questions in geometric group theory.

Wed, 11 Mar 2020
16:00
C1

Horocyclic product of Gromov hyperbolic spaces.

Tom Ferragut
(Université de Montpellier)
Abstract

Gromov hyperbolicity is a property to metric spaces that generalises the notion of negative curvature for manifolds.
After an introduction about these spaces, we will explain the construction of horocyclic products related to lamplighter groups, Baumslag solitar groups and the Sol geometry.
We will describe the shape of geodesics in them, and present rigidity results on their quasi-isometries due to Farb, Mosher, Eskin, Fisher and Whyte.

Wed, 04 Mar 2020
16:00
C1

Automorphisms of free groups and train tracks

Monika Kudlinska
(University of Bristol)
Abstract


 Let phi be an outer automorphism of a free group. A topological representative of phi is a marked graph G along with a homotopy equivalence f: G → G which induces the outer automorphism phi on the fundamental group of G. For any given outer automorphism, the choice of topological representative is far from unique. Handel and Bestvina showed that sufficiently nice automorphisms admit a special type of topological representative called a train track map, whose dynamics can be well understood. 
In this talk I will outline the definition and motivation for train tracks, and give a sketch of Handel and Bestvina’s algorithm for finding them.
 

Wed, 19 Feb 2020
16:00
C1

Limit Groups and Real Trees

Jonathan Fruchter
(University of Oxford)
Abstract

Limit groups are a powerful tool in the study of free and hyperbolic groups (and even broader classes of groups). I will define limit groups in various ways: algebraic, logical and topological, and draw connections between the different definitions. We will also see how one can equip a limit group with an action on a real tree, and analyze this action using the Rips machine, a generalization of Bass-Serre theory to real trees. As a conclusion, we will obtain that hyperbolic groups whose outer automorphism group is infinite, split non-trivially as graphs of groups.

Wed, 12 Feb 2020
16:00
C1

Generalising Mirzakhani’s curve counting result

Nick Bell
(University of Bristol)
Abstract

On any hyperbolic surface, the number of curves of length at most L is finite. However, it is not immediately clear how quickly this number grows with L. We will discuss Mirzakhani’s breakthrough result regarding the asymptotic behaviour of this number, along with recent efforts to generalise her result using currents.

Wed, 05 Feb 2020
16:00
C1

Subgroups of direct products of right-angled Artin groups.

Jone Lopez de Gamiz
(University of Warwick)
Abstract

Right-angled Artin groups (RAAGs) were first introduced in the 70s by Baudisch and further developed in the 80s by Droms.
They have attracted much attention in Geometric Group Theory. One of the many reasons is that it has been shown that all hyperbolic 3-manifold groups are virtually finitely presented subgroups of RAAGs.
In the first part of the talk, I will discuss some of their interesting properties. I will explain some of their relations with manifold groups and their importance in finiteness conditions for groups.
In the second part, I will focus on my PhD project concerning subgroups of direct products of RAAGs.

Wed, 29 Jan 2020
16:00
C1

Aut(T) has trivial outer automorphism group

Ido Grayevsky
(Oxford University)
Abstract


The automorphism group of a d-regular tree is a topological group with many interesting features. A nice thing about this group is that while some of its features are highly non-trivial (e.g., the existence of infinitely many pairwise non-conjugate simple subgroups), often the ideas involved in the proofs are fairly intuitive and geometric. 
I will present a proof for the fact that the outer automorphism group of (Aut(T)) is trivial. This is original joint work with Gil Goffer, but as is often the case in this area, was already proven by Bass-Lubotzky 20 years ago. I will mainly use this talk to hint at how algebra, topology and geometry all play a role when working with Aut(T).
 

Wed, 22 Jan 2020
16:00
C1

Whitehead graphs in free groups

Ric Wade
(Oxford University)
Abstract

Whitehead published two papers in 1936 on free groups. Both concerned decision problems for equivalence of (sets of) elements under automorphisms. The first focused on primitive elements (those that appear in some basis), the second looked at arbitrary sets of elements. While both of the resulting algorithms are combinatorial, Whitehead's proofs that these algorithms actually work involve some nice manipulation of surfaces in 3-manifolds. We will have a look at how this works for primitive elements. I'll outline some generalizations due to Culler-Vogtmann, Gertsen, and Stallings, and if we have time talk about how it fits in with some of my current work.

Wed, 04 Dec 2019
16:00
C1

Double branched cover of knotoids, f-distance and entanglement in proteins.

Agnese Barbensi
(University of Oxford)
Abstract

Knotoids are a generalisation of knots that deals with open curves. In the past few years, they’ve been extensively used to classify entanglement in proteins. Through a double branched cover construction, we prove a 1-1 correspondence between knotoids and strongly invertible knots. We characterise forbidden moves between knotoids in terms of equivariant band attachments between strongly invertible knots, and in terms of crossing changes between theta-curves. Finally, we present some applications to the study of the topology of proteins. This is based on joint works with D.Buck, H.A.Harrington, M.Lackenby and with D. Goundaroulis.

Wed, 27 Nov 2019
16:00
C1

Hierarchies in one-relator groups

Marco Linton
(University of Warwick)
Abstract

A group splits as an HNN-extension if and only if the rank of its abelianisation is strictly positive. If we fix a class of groups one may ask a few questions about these splittings: How distorted are the vertex and edge groups? What form can the vertex and edge groups take? If they remain in our fixed class, do they also split? If so, under iteration will we terminate at something nice? In this talk we will answer all these questions for the class of one-relator groups and go through an example or two. Time permitting, we will also discuss possible generalisations to groups with staggered presentations.