Forthcoming events in this series


Fri, 20 May 2022

16:00 - 18:30
L1

Guest Speakers Seminar

Prof. Luis Caffarelli and Prof. Irene Gamba
(University of Texas at Austin)
Further Information

Event Timings:

16:00 – 16:10 Refreshments (Served in the North Mezzanine)

16:10 – 17:10  Talk by Prof. Luis Caffarelli

17:10 – 17:30 Refreshments Break (20mins - Served in the North Mezzanine)

17:30 – 18:30 Talk by Prof Irene Martínez Gamba

Each talk will have a Q&A afterwards.

Register your interest HERE

Abstract

 

 

Title: Topics on regularity theory for fully non-linear integro-differential equations

Abstract: We will focus on local and non-local Monge Ampere type equations, equations with deforming kernels and convex envelopes of functions with optimal special conditions. We discuss global solutions and their regularity properties.

 

Title: Quasilinear Conservative Collisional Transport in Kinetic Mean Field models

AbstractWe shall focus the on the interplay of nonlinear analysis  and numerical approximations to mean field models in particle physics where kinetic transport flows in momentum are strongly nonlinearly  modified by macroscopic quantities in classical or spectral density spaces. Two noteworthy models arise: the classical Fokker-Plank Landau dynamics as a low magnetized plasma regimes in the modeling of perturbative non-local high order terms. The other one corresponds to perturbation under strongly magnetized dynamics for fast electrons  in momentum space  give raise to a coupled system of classical kinetic diffusion processes described by the balance equations for electron probability density functions (electron pdf) coupled to the time dynamics on spectral energy waves  (quasi-particles) in a quantum process of their resonant interaction. Both models are rather different, yet there are derived form the Liouville-Maxwell system under different scaling. Analytical tools and some numerical  simulations show a presence of  strong hot tail anisotropy  formation taking the stationary states away from Classical equilibrium solutions stabilization for the iteration in a three dimensional cylindrical model. The semi-discrete schemes preserves the total system mass, momentum and energy, which are enforced by the numerical scheme. Error estimates can be obtained as well.

Work in collaboration with Clark Pennie and Kun Huang

Fri, 29 Nov 2019
11:30
L5

Oscillations and Spirals in Two Problems of Global Analysis

Siran Li
(Rice University)
Abstract

We present our works on two problems in global analysis (i.e.,analysis on manifolds): One concerns the compactness of the space of smooth $d$-dimensional immersed hypersurfaces with uniformly $L^d$-bounded second fundamental forms, and the other concerns the validity of W^{2,p}$-elliptic estimates for the Laplace--Beltrami operator on open manifolds. We construct explicit counterexamples to both problems. The onstructions involve rapid oscillations and wild spirals, with motivations derived from physical phenomena.

Fri, 14 Sep 2018

10:00 - 11:00
L3

Deterministic particle approximation for local and nonlocal transport equations

Marco Di Francesco
(University of L' Aquila)
Abstract

The derivation of first-order nonlinear transport PDEs via interacting particles subject only to deterministic forces is crucial in the socio-biological sciences and in the real world applications (e.g. vehicular traffic, pedestrian movements), as it provides a rigorous justification to a "continuum" description in situations more naturally described by a discrete approach. This talk will collect recent results on the derivation of entropy solutions to scalar conservation laws (arising e.g. in traffic flow) as many particle limits of "follow-the-leader"-type ODEs, including extensions to the case with Dirichlet boundary conditions and to the Hughes model for pedestrian movements (the results involve S. Fagioli, M. D. Rosini, G. Russo). I will then describe a recent extension of this approach to nonlocal transport equations with a "nonlinear mobility" modelling prevention of overcrowding for high densities (in collaboration with S. Fagioli and E. Radici). 

Fri, 10 Aug 2018

11:00 - 12:00
L6

Behaviors of Navier-Stokes(Euler)-Fokker-Planck equations

Hailiang Li
(Capital Normal University)
Abstract

We consider the behaviors of global solutions to the initial value problems for the multi-dimensional Navier-Stokes(Euler)-Fokker-Planck equations. It is shown that due to the micro-macro coupling effects of relaxation damping type, the sound wave type propagation of this NSFP or EFP system for two-phase fluids is observed with the wave speed determined by the two-phase fluids. This phenomena can not be observed for the pure Fokker-Planck equation and the Navier-Stokes(Euler) equation with frictional damping.

Thu, 02 Aug 2018
12:00
C6

A mathematical theory for the construction of the turbulent two point correlation functions

James Glimm
(Stony Brook University)
Abstract

We solve the construction of the turbulent two point functions in the following manner:

A mathematical theory, based on a few physical laws and principles, determines the construction of the turbulent two point function as the expectation value of a statistically defined random field. The random field is realized via an infinite induction, each step of which is given in closed form.

Some version of such models have been known to physicists for some 25 years. Our improvements are two fold:

  1. Some details in the reasoning appear to be missing and are added here.
  2. The mathematical nature of the algorithm, difficult to discern within the physics presentation, is more clearly isolated.

Because the construction is complex, usable approximations, known as surrogate models, have also been developed.

The importance of these results lies in the use of the two point function to improve on the subgrid models of Lecture I.

We also explain limitations. For the latter, we look at the deflagration to detonation transition within a type Ia supernova and decide that a completely different methodology is recommended. We propose to embed multifractal ideas within a physics simulation package, rather than attempting to embed the complex formalism of turbulent deflagration into the single fluid incompressible model of the two point function. Thus the physics based simulation model becomes its own surrogate turbulence model.

Thu, 02 Aug 2018

11:00 - 12:00
C6

Turbulence models and convergence rates

James Glimm
(Stony Brook University)
Abstract

We discuss three methods for the simulation of turbulent fluids. The issue we address is not the important issue of numerical algorithms, but the even more basic question of the equations to be solved, otherwise known as the turbulence model.  These equations are not simply the Navier-Stokes equations, but have extra, turbulence related terms, related to turbulent viscosity, turbulent diffusion and turbulent thermal conductivity. The extra terms are not “standard textbook” physics, but are hypothesized based on physical reasoning. Here we are concerned with these extra terms.

The many models, divided into broad classes, differ greatly in

Dependence on data
Complexity
Purpose and usage

For this reason, each of the classes of models has its own rationale and domain of usage.

We survey the landscape of turbulence models.

Given a turbulence model, we ask: what is the nature of convergence that a numerical algorithm should strive for? The answer to this question lies in an existence theory for the Euler equation based on the Kolmogorov 1941 turbulent scaling law, taken as a hypothesis (joint work with G-Q Chen).

Wed, 01 Aug 2018

12:00 - 13:00
C6

Bressan’s Conjecture on compactness of flow for BV vector fields

Stefano Bianchini
(SISSA-ISAS)
Abstract

When studying a systems of conservation laws in several space dimensions, A. Bressan conjectured that the flows $X^n(t)$ generated by a smooth vector fields $\mathbf b^n(t,x)$,
\[
\frac{d}{dt} X^n(t,y) = \mathbf b^n(t,X(t,y)),
\]
are compact in $L^1(I\!\!R^d)$ for all $t \in [0,T]$ if $\mathbf b^n \in L^\infty \cap \mathrm{BV}((0,t) \times I\!\!R^d)$ and they are nearly incompressible, i.e.
\[
\frac{1}{C} \leq \det(\nabla_y X(t,y)) \leq C
\]
for some constant $C$. This conjecture is implied by the uniqueness of the solution to the linear transport equation
\[
\partial_t \rho + \mathrm{div}_x(\rho \mathbf b) = 0, \quad \rho \in L^\infty((0,T) \times I\!\!R^d),
\]
and it is the natural extension of a series of results concerning vector fields $\mathbf b(t,x)$ with Sobolev regularity.

We will give a general framework to approach the uniqueness problem for the linear transport equation and to prove Bressan's conjecture.

Mon, 23 Jul 2018

14:00 - 16:00
L6

Shock Refection Problem: Existence and Uniqueness of Solutions

Mikhail Feldman
(University of Wisconsin)
Abstract

We discuss shock reflection problem for compressible gas dynamics, von Neumann conjectures on transition between regular and Mach reflections. Then we describe recent results on existence and uniqueness of regular reflection solutions for potential flow equation, and discuss some techniques involved in the proof. The approach is to reduce the shock reflection problem to a free boundary problem, and prove existence and uniqueness by a version of method of continuity. This involves apriori estimates of solutions in the elliptic region of the equation of mixed type, with ellipticity degenerating on some part of the boundary. For the proof of uniqueness, an important property of solutions is convexity of the free boundary. We will also discuss some open problems.

This talk is based on joint works with G.-Q. Chen and W. Xiang.

 

Wed, 04 Apr 2018

15:00 - 16:00
L5

Schauder theory for uniformly degenerate elliptic equations

Qing Han
(University of Notre Dame)
Abstract

The uniformly degenerate elliptic equation is a special class of degenerate elliptic equations. It appears frequently in many important geometric problems. For example, the Beltrami-Laplace operator on conformally compact manifolds is uniformly degenerate elliptic, and the minimal surface equation in the hyperbolic space is also uniformly degenerate elliptic. In this talk, we discuss the global regularity for this class of equations in the classical Holder spaces. We also discuss some applications.

Tue, 01 Aug 2017

15:30 - 16:30
L5

A turbulent State for Electrical Signals in the Heart: Treatments & Mechanisms

James Glimm
(Stony Brook University)
Abstract

Fibrillation is a chaotic, turbulent state for the electrical signal fronts in the heart. In the ventricle it is fatal if not treated promptly. The standard treatment is by an electrical shock to reset the cardiac state to a normal one and allow resumption of a normal heart beat.

The fibrillation wave fronts are organized into scroll waves, more or less analogous to a vortex tube in fluid turbulence. The centerline of this 3D rotating object is called a filament, and it is the organizing center of the scroll wave.

The electrical shock, when turned on or off, creates charges at the conductivity discontinuities of the cardiac tissue. These charges are called virtual electrodes. They charge the region near the discontinuity, and give rise to wave fronts that grow through the heart, to effect the defibrillation. There are many theories, or proposed mechanisms, to specify the details of this process. The main experimental data is through signals on the outer surface of the heart, so that simulations are important to attempt to reconstruct the electrical dynamics within the interior of the heart tissue. The primary electrical conduction discontinuities are at the cardiac surface. Secondary discontinuities, and the source of some differences of opinion, are conduction discontinuities at blood vessel walls.

In this lecture, we will present causal mechanisms for the success of the virtual electrodes, partially overlapping, together with simulation and biological evidence for or against some of these.

The role of small blood vessels has been one area of disagreement. To assess the role of small blood vessels accurately, many details of the modeling have been emphasized, including the thickness and electrical properties of the blood vessel walls, the accuracy of the biological data on the vessels, and their distribution though the heart. While all of these factors do contribute to the answer, our main conclusion is that the concentration of the blood vessels on the exterior surface of the heart and their relative wide separation within the interior of the heart is the factor most strongly limiting the significant participation of small blood vessels in the defibrillation process.

 

Tue, 01 Aug 2017

14:00 - 15:00
L5

Reaction Diffusion Equations and Electrical Signals in the Heart

James Glimm
(Stony Brook University)
Abstract

Since the pioneering work of Hodgkin and Huxley , we know that electrical signals propagate along a nerve fiber via ions that flow in and out of the fiber, generating a current. The voltages these currents generate are subject to a diffusion equation, which is a reduced form of the Maxwell equation. The result is a reaction (electrical currents specified by an ODE) coupled to a diffusion equation, hence the term reaction diffusion equation.

The heart is composed of nerve fibers, wound in an ascending spiral fashion along the heart chamber. Modeling not individual nerve fibers, but many within a single mesh block, leads to partial differential equation coupled to the reaction ODE.

As with the nerve fiber equation, these cardiac electrical equations allow a propagating wave front, which normally moves from the bottom to the top of the heart, giving rise to contractions and a normal heart beat, to accomplish the pumping of blood.

The equations are only borderline stable and also allow a chaotic, turbulent type wave front motion called fibrillation.

In this lecture, we will explain the 1D traveling wave solution, the 3D normal wave front motion and the chaotic state.

The chaotic state is easiest to understand in 2D, where it consists of spiral waves rotating about a center. The 3D version of this wave motion is called a scroll wave, resembling a fluid vortex tube.

In simplified models of reaction diffusion equations, we can explain much of this phenomena in an analytically understandable fashion, as a sequence of period doubling transitions along the path to chaos, reminiscent of the laminar to turbulent transition.

Mon, 01 Jun 2015

10:00 - 11:00
L5

Examples of 2d incompressible flows and certain model equations

Vladimir Sverak
(University of Minnesota)
Abstract

We will discuss 2d Euler and Boussinesq (incompressible) flows related to a possible boundary blow-up scenario for the 3d axi-symmetric case suggested by G. Luo and T. Hou, together with some easier model problems relevant for that situation.

Tue, 10 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 2)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Tue, 03 Feb 2015

11:00 - 13:00
C1

Some analytic problems on liquid crystals (part 1)

Min-Chun Hong
(The University of Queensland)
Abstract

1)      The Hardt-Lin's problem and a new approximation of a relaxed energy for harmonic maps.

We introduce a new approximation for  the relaxed energy $F$ of the Dirichlet energy and prove that the minimizers of the approximating functional converge to a minimizer $u$ of the relaxed energy for harmonic maps, and that $u$ is  partially regular without using the concept of Cartesian currents.

2)  Partial regularity in liquid crystals  for  the Oseen-Frank model:  a new proof of the result of Hardt, Kinderlehrer and Lin.

Hardt, Kinderlehrer and Lin (\cite {HKL1}, \cite {HKL2}) proved that a minimizer $u$ is smooth on some open subset
$\Omega_0\subset\Omega$ and moreover $\mathcal H^{\b} (\Omega\backslash \Omega_0)=0$ for some positive $\b <1$, where
$\mathcal H^{\b}$ is the Hausdorff measure.   We will present a new proof of Hardt, Kinderlehrer and Lin.

 3)      Global existence of solutions of the Ericksen-Leslie system for  the Oseen-Frank model.

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Wed, 21 May 2014

15:00 - 16:00
L5

Pointwise estimates for degenerate elliptic systems

Dr Dominic Breit
(LMU Munich)
Abstract

We consider degenerate elliptic systems like the p-Laplacian  system with p>1 and zero boundary data. The r.h.s. is given in  divergence from div F. We prove a pointwise estimate (in terms of the  sharp maximal function) bounding the gradient of the solution via the  function F. This recovers several known results about local regularity  estimates in L^q, BMO and C^a. Our pointwise inequality extends also  to boundary points. So these  regularity estimates hold globally as  well. The global estimates in BMO and C^a are new.

Fri, 02 May 2014

17:00 - 18:00
L5

Relaxation in BV under non-standard growth conditions

Dr Parth Soneji
(Ludwig Maximilians Universitat)
Abstract

Morrey's lower semicontinuity theorem for quasiconvex integrands is a classical result that establishes the existence of minimisers to variational problems by the Direct Method, provided the integrand satisfies "standard" growth conditions (i.e. when the growth and coercivity exponents match). This theorem has more recently been refined to consider convergence in Sobolev Spaces below the growth exponent of the integrand: such results can be used to show existence of solutions to a "Relaxed minimisation problem" when we have "non-standard'" growth conditions.

When the integrand satisfies linear coercivity conditions, it is much more useful to consider the space of functions of Bounded Variation, which has better compactness properties than $W^{1,1}$. We review the key results in the standard growth case, before giving an overview of recent results that we have obtained in the non-standard case. We find that new techniques and ideas are required in this setting, which in fact provide us with some interesting (and perhaps unexpected) corollaries on the general nature of quasiconvex functions. 

Fri, 07 Mar 2014

17:00 - 18:00
L3

Icosahedral clusters: the stem cell of the solid state?

Jean Taylor
(Rutgers University)
Abstract

Recent experimental work has determined the atomic structure of a quasicrystalline Cd-Yb alloy. It highlights the elegant role of polyhedra with icosahedral symmetry. Other work suggests that while chunks of periodic crystals and disordered glass predominate in the solid state, there are many hints of icosahedral clusters. This talk is based on a recent Mathematical Intelligencer article on quasicrystals with Marjorie Senechal.


The seminar will be followed by a drinks reception and forms part of a longer PDE and CoV related Workshop.


To register for the seminar and drinks reception go to http://doodle.com/acw6bbsp9dt5bcwb

Wed, 29 Jan 2014

15:00 - 16:00
L6

Existence and regularity results for the heat flow of higher dimensional H-systems

Professor Chiara Leone
(Universita Degli Studi 'Frederic II' di Napoli)
Abstract

In this talk we will show the existence  of a regular "small" weak solution to the flow of the higher dimensional H-systems with initial-boundary conditions. We also analyze its time asymptotic bahavior and we give a stability result.

Fri, 17 Jan 2014

14:00 - 15:30
L3

The positive Jacobian constraint in elasticity theory and orientation-preserving Young measures

Filip Rindler
(University of Warwick)
Abstract

In elasticity theory, one naturally requires that the Jacobian determinant of the deformation is positive or even a-priori prescribed (for example incompressibility). However, such strongly non-linear and non-convex constraints are difficult to deal with in mathematical models. In this talk, which is based on joint work with K. Koumatos (Oxford) and E. Wiedemann (UBC/PIMS), I will present various recent results on how this constraint can be manipulated in subcritical Sobolev spaces, where the integrability exponent is less than the dimension.

In particular, I will give a characterization theorem for Young measures under this side constraint, which are widely used in the Calculus of Variations to model limits of nonlinear functions of weakly converging "generating" sequences. This is in the spirit of the celebrated Kinderlehrer--Pedregal Theorem and based on convex integration and "geometry" in matrix space.

Finally, applications to the minimization of integral functionals, the theory of semiconvex hulls, incompressible extensions, and approximation of weakly orientation-preserving maps by strictly orientation-preserving ones in Sobolev spaces are given.

Thu, 16 Jan 2014

16:00 - 17:30
L3

Topology of Sobolev spaces and Local minimizers

Ali Taheri
(University of Sussex)
Abstract

Attempting to extend the methods of critical point theory (e.g., those of Morse theory and Lusternik-Schnirelman theory) to the study of strong local minimizers of integral functionals of the calculus of variations I will describe how the obstruction method of algebraic topology can be successfully used to tackle the enumeration problem for various homotopy classes of maps in Sobolev spaces and that how this will result in precise lower bounds on the number of such local minimizers in terms of convenient topological invariants of the underlying spaces. I will then move on to dicussing variants as well as applications of the result to some classes of geometric nonlinear PDEs in particular problems in nonlinear elasticity.

Thu, 16 Jan 2014

14:00 - 15:30
L3

Functionals defined on 1-rectifiable sets and the application to the theory of dislocations

Adriana Garroni
(Universita’ di Roma)
Abstract

In the theory of dislocations one is naturally led to consider energies of “line tension” type concentrated on lines. These lines may have a local vector-valued multiplicity, and the energy may depend on this multiplicity and on the orientation of the line. In the two-dimensional case this problem reduces to the classical problem of energies defined on partitions which arises in the sharp-interface models for phase transitions. 

I will introduce the main results concerning functionals in the calculus of variations that are defined on partitions. Such partitions are nicely characterized as level sets of function with bounded variations with a discrete set of values.  In this setting I will recall the characterization of the lower semicontinuity and the relaxation formula, which gives rise to the notion of BV-ellipticity. The case of dislocations in a three-dimensional crystal requires a formulation in the setting of 1-rectifiable currents with multiplicity in a lattice. In this context I will describe the main results and some examples of interest, in which relaxation is necessary and can be characterized.

Wed, 27 Nov 2013

14:00 - 15:00
L4

The existence theorem for the steady Navier--Stokes equations in exterior axially symmetric domains

Professor Mikhail Korobkov
(Novosibirsk State University)
Abstract

We study the nonhomogeneous boundary value problem for Navier--Stokes equations of steady motion of a viscous incompressible fluid in  a plane or spatial exterior domain with multiply connected boundary. We prove that this problem has a solution for axially symmetric case (without any restrictions on fluxes, etc.)  No restriction on the size of fluxes are required. This is a joint result with K.Pileckas and R.Russo.

Wed, 07 Aug 2013

12:00 - 13:00
Gibson Grd floor SR

An Initial-Boundary Value Problem for the Fully-Coupled Navier-Stokes/Q-Tensor System

Yuning Liu
(University of Regensburg)
Abstract

We will present in this lecture the global existence of weak solutions and the local existence and uniqueness of strong-in-time solutions for the fully-coupled Navier-Stokes/Q-tensor system on a bounded domain $\O\subset\mathbb{R}^d$ ($d=2,3$) with inhomogenerous Dirichlet and Neumann or mixed boundary conditions. Our result is valid for any physical parameter $\xi$ and we consider the Navier-Stokes equations with a general (but smooth) viscosity coefficient.