Forthcoming events in this series


Mon, 16 May 2016

16:00 - 17:00
L4

"Null mean curvature" flow and marginally outer trapped surfaces

Theodora Bourni
(Freie Universität Berlin)
Abstract
In this talk we discuss a new second order parabolic evolution equation

for hypersurfaces in space-time initial data sets, that generalizes mean

curvature flow (MCF). In particular, the 'null mean curvature' - a

space-time extrinsic curvature quantity - replaces the usual mean

curvature in the evolution equation defining MCF.  This flow is motivated

by the study of black holes and mass/energy inequalities in general

relativity. We present a theory of weak solutions using the level-set

method and  outline a natural application of the flow as a parabolic

approach to finding outermost marginally outer trapped surfaces (MOTS),

which play the role of quasi-local black hole boundaries in general

relativity. This is joint work with Kristen Moore.
Mon, 09 May 2016

16:00 - 17:00
L4

The wrinkling of a twisted ribbon

Ethan O'Brien
(Courant Institute)
Abstract

We explore a specific system in which geometry and loading conspire to generate fine-scale wrinkling. This system -- a twisted ribbon held with small tension -- was examined experimentally by Chopin and Kudrolli 
[Phys Rev Lett 111, 174302, 2013].

There is a regime where the ribbon wrinkles near its center. A recent paper by Chopin, D\'{e}mery, and Davidovitch models this regime using a von-K\'{a}rm\'{a}n-like 
variational framework [J Elasticity 119, 137-189, 2015]. Our contribution is to give upper and lower bounds for the minimum energy as the thickness tends to zero. Since the bounds differ by a thickness-independent prefactor, we have determined how the minimum energy scales with thickness. Along the way we find estimates on Sobolev norms of the minimizers, which provide some information on the character of the wrinkling. This is a joint work with  Robert V. Kohn in Courant Institute, NYU.

Mon, 02 May 2016

16:00 - 17:00
L4

Square Functions and the Muckenhoupt Weight Classes of Elliptic Measures

Bernd Kirchheim
(Universität Leipzig)
Abstract

We give a new characterization of the property that the elliptic measure
belongs to the infinity weight Muckenhoupt class
in terms of a Carleson measure property of bounded solutions.
This is joint work with C.Kenig, J.Pipher and T.Toro

Mon, 25 Apr 2016

16:00 - 17:00
L4

The decay of solutions of Maxwell-Klein-Gordon equations

Shiwu Yang
(Cambridge)
Abstract

It has been shown that there are global solutions to 
Maxwell-Klein-Gordon equations in Minkowski space with finite energy 
data. However, very little is known about the asymptotic behavior of the 
solution. In this talk, I will present recent progress on the decay 
properties of the solutions. We show the quantitative energy flux decay 
of the solutions with data merely bounded in some weighted energy space. 
The results in particular hold in the presence of large total charge. 
This is the first result that gives a complete and precise description 
of the global behavior of large nonlinear fields.
 

Mon, 07 Mar 2016

16:00 - 17:00
L4

Macroscopic transport: ballistic, diffusive, super diffusive

Stefano Olla
(Ceremade)
Abstract

In acoustic materials (non null sound velocity), there is a clear separation of scale between the relaxation to mechanical equilibrium, governed by Euler equations, and the slower relaxation to thermal equilibrium, governed by heat equation if thermal conductivity is finite. In one dimension in acoustic systems, thermal conductivity is diverging and the thermal equilibrium is reached by a superdiffusion governed by a fractional heat equation. In non-acoustic materials it seems that there is not such separation of scales, and thermal and mechanical equilibriums are reached at the same time scale, governed by a Euler-Bernoulli beam equation. We prove such macroscopic behaviors in chains of oscillators with dynamics perturbed by a random local exchange of momentum, such that energy and momentum are conserved. (Works in collaborations with T. Komorowski).

Fri, 04 Mar 2016

12:00 - 13:00
L1

The effect of domain shape on reaction-diffusion equations

Henri Berestycki
(EHESS)
Abstract

I will discuss some reaction-diffusion equations of bistable type motivated by biology and medicine. The aim is to understand the effect of the shape of the domain on propagation or on blocking of advancing waves. I will first describe the motivations of these questions and present a result about the existence of generalized “transition waves”. I will then discuss various geometric conditions that lead to either blocking, or partial propagation, or complete propagation. These questions involve new qualitative results for some non-linear elliptic and parabolic partial differential equations. I report here on joint work with Juliette Bouhours and Guillemette Chapuisat.

Mon, 29 Feb 2016

16:00 - 17:00
L4

Crystallization Results for Optimal Location Problems

David Bourne
(Durham University)
Abstract

While it is believed that many particle systems have periodic ground states, there are few rigorous crystallization results in two and more dimensions. In this talk I will show how results by the Hungarian geometer László Fejes Tóth can be used to prove that an idealised block copolymer energy is minimised by the triangular lattice. I will also discuss a numerical method for a broader class of optimal location problems and some conjectures about minimisers in three dimensions. This is joint work with Mark Peletier, Steven Roper and Florian Theil. 

Mon, 22 Feb 2016

16:00 - 17:00
L4

The hydrodynamic limit of the parabolic Ginzburg-Landau equation

Matthias Kurzke
(University of Nottingham)
Abstract

The Ginzburg-Landau functional serves as a model for the formation of vortices in many physical contexts. The natural gradient flow, the parabolic Ginzburg-Landau equation, converges in the limit of small vortex size and finite number of vortices to a system of ODEs. Passing to the limit of many vortices in this ODE, one can derive a mean field PDE, similar to the passage from point vortex systems to the 2D Euler equations. In the talk, I will present quantitative estimates that allow us to directly connect the parabolic GL equation to the limiting mean field PDE. In contrast to recent work by Serfaty, our work is restricted to a fairly low number of vortices, but can handle vortex sheet initial data in bounded domains. This is joint work with Daniel Spirn (University of Minnesota).

Sat, 20 Feb 2016

16:00 - 17:00

TBA

Piotr Mucha
(Warsaw)
Mon, 15 Feb 2016

16:00 - 17:00
L4

Flowing to minimal surfaces

Melanie Rupflin
(OxPDE, University of Oxford)
Abstract

For maps from surfaces there is a close connection between the area of the surface parametrised by the map and its Dirichlet energy and this translates also into a relation for the corresponding critical points. As such, when trying to find minimal surfaces, one route to take is to follow a suitable gradient flow of the Dirichlet energy. In this talk I will introduce such a flow which evolves both a map and a metric on the domain in a way that is designed to change the initial data into a minimal immersions and discuss some question concerning the existence of solutions and their asymptotic behaviour. This is joint work with Peter Topping.

Mon, 08 Feb 2016

16:00 - 17:00
L4

Pseudo-differential operators on Lie groups

Veronique Fischer
(University of Bath)
Abstract
In this talk, I will present some recent developments in the theory of pseudo-differential operators on Lie groups. First I will discuss why `reasonable' Lie groups are the interesting manifolds where one can develop global symbolic pseudo-differential calculi. I will also give a brief overview of the analysis in the context of Lie groups. I will conclude with some recent works developing pseudo-differential calculi on certain classes of Lie groups.
Mon, 01 Feb 2016

16:00 - 17:00
L4

Limits of $\alpha$-harmonic maps

Tobias Lamm
(Karlsruhe Institute of Technology)
Abstract

I will discuss a recent joint work with A. Malchiodi (Pisa) and M. Micallef (Warwick) in which we show that not every harmonic map can be approximated by a sequence of $\alpha$-harmonic maps.

Mon, 25 Jan 2016

16:00 - 17:00
L4

Global well-posedness of the axisymmetric Navier-Stokes equations in the exterior of an infinite cylinder

Ken Abe
(Kyoto and Oxford)
Abstract
We consider the initial-boundary value problem of the Navier-Stokes equations for axisymmetric initial data with swirl in the exterior of an infinite cylinder, subject to the slip boundary condition. We construct global solutions and give an upper bound for azimuthal component of vorticity in terms of the size of cylinder. The proof is based on the Boussinesq system. We show that the system is globally well-posed for axisymmetric data without swirl.
Mon, 18 Jan 2016

16:00 - 17:00
L4

Nonlocal self-improving properties

Tuomo Kuusi
(Aalto University)
Abstract

The classical Gehring lemma for elliptic equations with measurable coefficients states that an energy solution, which is initially assumed to be $H^1$ - Sobolev regular, is actually in a better Sobolev space space $W^{1,q}$ for some $q>2$. This a consequence of a self-improving property that so-called reverse Hölder inequality implies. In the case of nonlocal equations a self-improving effect appears: Energy solutions are also more differentiable. This is a new, purely nonlocal phenomenon, which is not present in the local case. The proof relies on a nonlocal version of the Gehring lemma involving new exit time and dyadic decomposition arguments. This is a joint work with G. Mingione and Y. Sire. 

Mon, 07 Dec 2015

16:00 - 17:00
L4

Biaxiality in liquid crystals at low temperatures (Please note Week 9)

Duvan Henao
(Pontificia Universidad Católica de Chile)
Abstract

We study the low-temperature limit in the Landau-de Gennes theory for liquid crystals. We prove that for minimizers for orientable Dirichlet data tend to be almost uniaxial but necessarily contain some biaxiality around the singularities of a limiting harmonic map. In particular we prove that around each defect there must necessarily exist a maximal biaxiality point, a point with a purely uniaxial configuration with a positive order parameter, and a point with a purely uniaxial configuration with a negative order parameter. Estimates for the size of the biaxial cores are also given.

This is joint work with Apala Majumdar and Adriano Pisante.

Wed, 02 Dec 2015

16:00 - 17:00
L1

Global well-posedness of the energy critical Maxwell-Klein-Gordon equation

Sung-jin Oh
(UC Berkeley)
Abstract

The massless Maxwell-Klein-Gordon system describes the interaction between an electromagnetic field (Maxwell) and a charged massless scalar field (massless Klein-Gordon, or wave). In this talk, I will present a recent proof, joint with D. Tataru, of global well-posedness and scattering of this system for arbitrary finite energy data in the (4+1)-dimensional Minkowski space, in which the PDE is energy critical.

Mon, 16 Nov 2015

16:00 - 17:00
L2

The Stokes-Fourier equations as scaling limit of the hard sphere dynamics

Laure Saint-Raymond
(Ecole Normale Superieure)
Abstract
In his sixth problem, Hilbert asked for an axiomatization of gas dynamics, and he suggested to use the Boltzmann equation as an intermediate description between the (microscopic) atomic dynamics and (macroscopic) fluid models. The main difficulty to achieve this program is to prove the asymptotic decorrelation between the local microscopic interactions, referred to as propagation of chaos, on a time scale much larger than the mean free time. This is indeed the key property to observe some relaxation towards local thermodynamic equilibrium.

 

This control of the collision process can be obtained in fluctuation regimes. In a recent work with I. Gallagher and T. Bodineau, we have established a long time convergence result to the linearized Boltzmann equation, and eventually derived the acoustic and incompressible Stokes equations in dimension 2. The proof relies crucially on symmetry arguments, combined with a suitable pruning procedure to discard super exponential collision trees.
Mon, 16 Nov 2015

15:00 - 16:00
L2

Magnitudes of compact sets in euclidean spaces: an application of analysis to the theory of enriched categories

Tony Carbery
(University of Edinburgh)
Abstract

Leinster and Willerton have introduced the concept of the magnitude of a metric space, as a special case as that of an enriched category. It is a numerical invariant which is designed to capture the important geometric information about the space, but concrete examples of ts values on compact sets in euclidean space have hitherto been lacking. We discuss progress in some conjectures of Leinster and Willerton.

Mon, 09 Nov 2015

16:00 - 17:00
L5

Instance optimality for the maximum strategy

Lars Diening
(University of Osnabruck)
Abstract

We study the adaptive finite element approximation of the Dirichlet problem $-\Delta u = f$ with zero boundary values using newest vertex bisection. Our approach is based on the minimization of the corresponding Dirichlet energy. We show that the maximums strategy attains every energy level with a number of degrees of freedom, which is proportional to the optimal number. As a consequence we achieve instance optimality of the error. This is a joint work with Christian Kreuzer (Bochum) and Rob Stevenson (Amsterdam).

Mon, 02 Nov 2015

16:00 - 17:00
L5

Sharp Trace-Sobolev inequalities of order 4

Antonio Ache
(Princeton University)
Abstract

We establish sharp Sobolev inequalities of order four on Euclidean $d$-balls for $d$ greater than or equal to four. When $d=4$, our inequality generalizes the classical second order Lebedev-Milin inequality on Euclidean $2$-balls. Our method relies on the use of scattering theory on hyperbolic $d$-balls. As an application, we charcaterize the extremals of the main term in the log-determinant formula corresponding to the conformal Laplacian coupled with the boundary Robin operator on Euclidean $4$-balls. This is joint work with Alice Chang. 

Mon, 19 Oct 2015

16:00 - 17:00
L5

The tangential touch problem for fully nonlinear elliptic operators

Emanuel Indrei
(Carnegie Mellon Univeristy)
Abstract
The tangential touch problem in elliptic theory consists of exposing the dynamics of the free boundary near the fixed boundary in obstacle problems. The solution of this problem is discussed for fully nonlinear elliptic operators in two dimensions.
Based on joint work with Andreas Minne.
Mon, 08 Jun 2015

17:00 - 18:00
L4

Shock Development in Spherical Symmetry

Andre Lisibach
(ETH Zurich)
Abstract

The general problem of shock formation in three space dimensions was solved by Christodoulou in 2007. In his work also a complete description of the maximal development of the initial data is provided. This description sets up the problem of continuing the solution beyond the point where the solution ceases to be regular. This problem is called the shock development problem. It belongs to the category of free boundary problems but in addition has singular initial data because of the behavior of the solution at the blowup surface. In my talk I will present the solution to this problem in the case of spherical symmetry. This is joint work with Demetrios Christodoulou.

Mon, 01 Jun 2015

17:00 - 18:00
L4

Uniqueness of the Leray-Hopf solution for a dyadic model

Nikolai Filonov
(Steklov Institute of Mathematics)
Abstract

We consider the system of nonlinear differential equations
\begin{equation}
(1) \qquad
\begin{cases}
\dot u_n(t) + \lambda^{2n} u_n(t) 
- \lambda^{\beta n} u_{n-1}(t)^2 + \lambda^{\beta(n+1)} u_n(t) u_{n+1}(t) = 0,\\
u_n(0) = a_n, n \in \mathbb{N}, \quad \lambda > 1, \beta > 0.
\end{cases}
\end{equation}
In this talk we explain why this system is a model for the Navier-Stokes equations of hydrodynamics. The natural question is to find a such functional space, where one could prove the existence and the uniqueness of solution. In 2008, A. Cheskidov proved that the system (1) has a unique "strong" solution if $\beta \le 2$, whereas the "strong" solution does not exist if $\beta > 3$. (Note, that the 3D-Navier-Stokes equations correspond to the value $\beta = 5/2$.) We show that for sufficiently "good" initial data the system (1) has a unique Leray-Hopf solution for all $\beta > 0$.