Forthcoming events in this series


Mon, 02 Mar 2020
12:45

Aspects of gauge-strings duality

Carlos Nunez
(Swansea)
Abstract

I will discuss recently published examples of SCFTs in
two dimensions and their dual backgrounds. Aspects of the
integrability of these string backgrounds will be described in
correspondence with those of the dual SCFTs. The comparison with four and
six dimensional examples will be presented. It time allows, the case of
conformal quantum mechanics will also be addressed.

Mon, 24 Feb 2020
12:45
L3

Quantizing superstrings in AdS/CFT, perturbatively and beyond

Valentina Forini
(City University London)
Abstract

String sigma-models relevant in the AdS/CFT correspondence are highly non-trivial two-dimensional field theories for which predictions at finite coupling exist, assuming integrability and/or the duality itself.  I will discuss general features of the perturbative approach to these models, and present progress on how to go extract finite coupling information in the most possibly general way, namely via the use of lattice field theory techniques. I will also present new results on certain ``defect-CFT’' correlators  at strong coupling. 

Mon, 17 Feb 2020
12:45
L3

Rademacher Expansions and the Spectrum of 2d CFT

Jinbeom Bae
(Oxford)
Abstract


I will describe work exploring the spectrum of two-dimensional unitary conformal field theories(CFT) with no extended chiral algebra and central charge larger than one. I will revisit a classical result from analytic number theory by Rademacher, which provides an exact formula for the Fourier coefficients of modular forms of non-positive weight. Generalizing this, I will explain how we employed Rademacher's idea to study the spectral density of two-dimensional CFT of our interest. The expression is given in terms of a Rademacher expansion, which converges for nonzero spin. The implications of our spectral density to the pure gravity in AdS3 will be discussed.

Mon, 10 Feb 2020
12:45
L3

Comments on de Sitter horizons & Sphere Partition Functions

Dionysios Anninos
(King's College London)
Abstract

We discuss properties of the cosmological horizon of a de Sitter universe, and compare to those of ordinary black holes. We consider both the Lorentzian and Euclidean picture. We discuss the relation to the sphere partition function and give a group-theoretic picture in terms of the de Sitter group. Time permitting we discuss some properties of three-dimensional de Sitter theories with higher spin particles. 

Mon, 03 Feb 2020
12:45
L3

IIB flux non-commutativity and the global structure of field theories

Inaki Garcia-Etxebarria
(Durham)
Abstract

I will discuss the origin of the choice of global structure
--- or equivalently, the choice for which higher p-form symmetries are
present in the theory --- for various (Lagrangian and non-Lagrangian)
field theories in terms of their realization in IIB and M-theory. I
will explain how this choice on the field theory side can be traced
back to the fact that fluxes in string/M-theory do not commute in the
presence of torsion. I will illustrate how these ideas provide a
stringy explanation for the fact that six-dimensional (2,0) and (1,0)
theories generically have a partition vector (as opposed to a partition
function) and explain how this reproduces the classification of N=4
theories provided by Aharony, Seiberg and Tachikawa. Time permitting, I
will also explain how to use these ideas to obtain the algebra of
higher p-form symmetries for 5d SCFTs arising from M-theory at
arbitrary isolated toric singularities, and to classify global forms
for various 4d theories in the presence of duality defects.

Mon, 27 Jan 2020
12:45
L3

The Attractor Mechanism and the Arithmetic of Calabi-Yau Manifolds

Philip Candelas
(Oxford)
Abstract

In the process of studying the zeta-function for one parameter families of Calabi-Yau manifolds we have been led to a manifold, for which the quartic numerator of the zeta-function factorises into two quadrics remarkably often. Among these factorisations, we find persistent factorisations; these are determined by a parameter that satisfies an algebraic equation with coefficients in Q, so independent of any particular prime.  We note that these factorisations are due a splitting of Hodge structure and that these special values of the parameter are rank two attractor points in the sense of IIB supergravity. To our knowledge, these points provide the first explicit examples of non-singular, non-rigid rank two attractor points for Calabi-Yau manifolds of full SU(3) holonomy. Modular groups and modular forms arise in relation to these attractor points in a way that, to a physicist, is unexpected. This is a report on joint work with Xenia de la Ossa, Mohamed Elmi and Duco van Straten.

 

 

Mon, 02 Dec 2019
12:45
L2

CFT and black holes

Manuela Kulaxizi
(Trinity College, Dublin)
Abstract

We consider CFTs with large gap in the spectrum of operators and a large number of degrees of freedom (large central charge). We analytically study a Heavy-Heavy-Light-Light correlation function, where Heavy, refers to an operator with conformal dimension which scales like the central charge and Light, refers to an operator whose dimension is of order unity in the large central charge limit. In certain regimes, the correlation function can be examined analytically leading to very simple and suggestive expressions.

Mon, 25 Nov 2019
12:45
L3

Special functions and complex surfaces in high-energy physics

Lorenzo Tancredi
(University of Oxford)
Abstract

I will elaborate on some recent developments on the theory of special functions which are relevant to the calculation of Feynman integrals in perturbative quantum field theory, highlighting the connections with some recent ideas in pure mathematics.

Mon, 11 Nov 2019
12:45

The Holographic Dual of Strongly γ-deformed N=4 SYM Theory

Nikolay Gromov
(King's College London)
Abstract

We present a first-principles derivation of a weak-strong duality between the four-dimensional fishnet theory in the planar limit and a discretized string-like model living in AdS5. At strong coupling, the dual description becomes classical and we demonstrate explicitly the classical integrability of the model. We test our results by reproducing the strong coupling limit of the 4-point correlator computed before non-perturbatively from the conformal partial wave expansion. Next, by applying the canonical quantization procedure with constraints, we show that the model describes a quantum integrable chain of particles propagating in AdS5. Finally, we reveal a discrete reparametrization symmetry of the model and reproduce the spectrum when known analytically. Due to the simplicity of our model, it could provide an ideal playground for holography. Furthermore, since the fishnet model and N=4 SYM theory are continuously linked our consideration could shed light on the derivation of AdS/CFT for the latter. This talk is based on recent work with Amit Sever.

Mon, 04 Nov 2019
12:45
L3

Supersymmetric phases of N = 4 SYM at large N

Alejandro Cabo Bizet
(King's College London)
Abstract

We show the existence of an infinite family of complex saddle-points at large N, for the matrix model of the superconformal index of SU(N) N = 4 super Yang-Mills theory on S3 × S1 with one chemical potential τ. The saddle-point configurations are labelled by points (m,n) on the lattice Λτ = Z τ + Z with gcd(m, n) = 1. The eigenvalues at a given saddle are uniformly distributed along a string winding (m, n) times along the (A, B) cycles of the torus C/Λτ . The action of the matrix model extended to the torus is closely related to the Bloch-Wigner elliptic dilogarithm, and its values at (m,n) saddles are determined by Fourier averages of the latter along directions of the torus. The actions of (0,1) and (1,0) agree with that of pure AdS5 and the Gutowski-Reall AdS5 black hole, respectively. The actions of the other saddles take a surprisingly simple form. Generically, they carry non vanishing entropy. The Gutowski-Reall black hole saddle dominates the canonical ensemble when τ is close to the origin, and other saddles dominate when τ approaches rational points. 

Mon, 28 Oct 2019
12:45

Duality walls and 3d S-fold SCFTs

Noppadol Mekareeya
(Milano Bicocca)
Abstract

A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of 3d superconformal field theories, known as the S-fold SCFTs.  One of the interesting features of such a theory is that, in general, it does not admit a conventional Lagrangian description. Nevertheless, it can be described by a quiver diagram with a link being a superconformal field theory, known as the T(U(N)) theory. In this talk, we discuss various properties of the S-fold theories, including their supersymmetric indices, supersymmetry enhancement in the infrared, as well as several interesting dualities.
 

Mon, 21 Oct 2019

12:45 - 13:45
L3

The Higgs Mechanism and Hasse diagrams

Antoine Bourget
(Imperial College London)
Abstract

I will explore the geometrical structure of Higgs branches of quantum field theories with 8 supercharges in 3, 4, 5 and 6 dimensions. They are hyperkahler singularities, and as such they can be described by a Hasse diagram built from a family of elementary transitions. This corresponds physically to the partial Higgs mechanism. Using brane systems and recently introduced notions of magnetic quivers and quiver subtraction, we formalise the rules to obtain the Hasse diagrams.

Mon, 14 Oct 2019
12:45
L3

Black Holes to Algebraic Curves: Consequences of the Weak Gravity Conjecture

Tom Rudelius
(IAS Princeton)
Abstract

The Weak Gravity Conjecture holds that in any consistent theory of quantum gravity, gravity must be the weakest force. This simple proposition has surprisingly nontrivial physical consequences, which in the case of supersymmetric string/M-theory compactifications lead to nontrivial geometric consequences for Calabi-Yau manifolds. In this talk we will describe these conjectured geometric consequences in detail and show how they are realized in concrete examples, deriving new results about 5d supersymmetric black holes in the process.

Mon, 10 Jun 2019
12:45
L3

Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula

Masazumi Honda
(Cambridge University)
Abstract

I will talk about supersymmetric index of 4d N=1 supersymmetric theories on S^1xM_3 which counts supersymmetric states.  
In the first part, I will discuss a general formula to describe an asymptotic behaviour of the index in the limit of shrinking S^1
which we refer to as 4d (refined) supersymmetric Cardy formula. This part is based on arXiv:1611.00380 with Lorenzo Di Pietro.
In the second part, I will apply this formula to black hole physics. I will mainly focus on superconformal index of SU(N) N=4 super Yang-Mills theory
which is expected to be dual to type IIB superstring theory on AdS_5 x S^5. We will see that the index in the large-N limit reproduces the Bekenstein-Hawking entropy
of rotating charged BPS black hole on the gravity side. Our result for finite N makes a prediction to the black hole entropy with full quantum corrections.
The second part is based on arXiv:1901.08091.

Mon, 03 Jun 2019
12:45
L3

Brackets, involutivity and generalised geometry for 4d, N=1 backgrounds

Anthony Ashmore
(Oxford)
Abstract

Supergravity backgrounds are an essential ingredient in string theory or field theories via AdS/CFT. The simplest example of a 4d, N=1 background is the product of four-dimensional Minkowski space with a seven-dimensional manifold with G_2 holonomy in M-theory. For more complicated backgrounds where we allow non-zero fluxes, the supersymmetry conditions can be rephrased in terms of G-structure data. The geometry of these backgrounds is often complicated and their general features are not well understood.

In this talk, I will define the analogue of G_2 geometry for generic 4d, N=1 backgrounds with flux in both type II and eleven-dimensional supergravity. The geometry is characterised by a G-structure in 'exceptional generalised geometry' that includes G_2 structures and Hitchin's generalised geometry as subcases. Supersymmetry is then equivalent to integrability of the structures, which appears as an involutivity condition and a moment map for diffeomorphisms and gauge transformations. I will show how this works in a few simple examples and discuss how this can be used to understand general properties of supersymmetric backgrounds.

 

Mon, 20 May 2019
12:45
L3

Topology, superposition and typicality in quantum gravity

David Berenstein
(UCSB)
Abstract

I will describe recent advances in the study of quantum gravity where one can explicitly show in examples that superpositions of states with fixed topology can change the topology of spacetime. These effects lead to paradoxes that are resolved in effective field theory by the introduction of code subspaces. I will also talk about more typical states and issues related on how to decide if a black hole horizon is smooth or not.

Mon, 13 May 2019
12:45
L3

Symmetries and Derivatives for Heterotic Moduli

Jock McOrist
(Surrey)
Further Information



 

Abstract

A virtue of the special geometry underlying the string theory moduli space of  Calabi--Yau manifolds is the existence of a canonical choice of moduli space coordinates. In heterotic theories, as much as we would desire it, there is no obvious choice of coordinates and so we should be covariant. I will discuss some issues in doing this.

Mon, 04 Mar 2019
12:45
L5

Gauge Theory and Boundary Integrability

David Skinner
(Cambridge)
Abstract

Costello Yamazaki and Witten have proposed a new understanding of quantum integrable systems coming from a variant of Chern-Simons theory living on a product of two Riemann surfaces. I’ll review their work, and show how it can be extended to the case of integrable systems with boundary. The boundary Yang-Baxter Equations, twisted Yangians and Sklyanin determinants all have natural interpretations in terms of line operators in the theory.

Mon, 25 Feb 2019
12:45
L5

The Laplacian flow in G_2 geometry

Jason Lotay
(Oxford)
Abstract

Finding Riemannian metrics with holonomy G_2 is a challenging problem with links in mathematics to Einstein metrics and area-minimizing submanifolds, and to M-theory in theoretical physics.  I will provide a brief survey on recent progress towards studying this problem using a geometric flow approach, including connections to calibrated fibrations.