Wed, 24 Apr 2024
16:00
L6

Harmonic maps and virtual properties of mapping class groups

Ognjen Tošić
(University of Oxford)
Abstract

It is a standard result that mapping class groups of high genus do not surject the integers. This is easily shown by computing the abelianization of the mapping class group using a presentation. Once we pass to finite index subgroups, this becomes a conjecture of Ivanov. More generally, we can ask which groups admit epimorphisms from finite index subgroups of the mapping class group. In this talk, I will present a geometric approach to this question, using harmonic maps, and explain some recent results.

Tue, 23 Apr 2024

16:00 - 17:00
C2

Gauge-invariant ideal structure of C*-algebras associated with strong compactly aligned product systems

Joseph Dessi
(Newcastle University)
Abstract

Product systems represent powerful contemporary tools in the study of mathematical structures. A major success in the theory came from Katsura (2007), who provided a complete description of the gauge-invariant ideals of many important C*-algebras arising from product systems over Z+. This result recaptures existing results from the literature, illustrating the versatility of product system theory. The question now becomes whether or not Katsura's result can be bolstered to product systems over semigroups other than Z+ and, if so, what applications do we obtain? An answer has been elusive, owing to the more pathological nature of product systems over general semigroups. However, recent strides by Dor-On and Kakariadis (2018) supply a more tractable subclass of product systems that still includes the important cases of C*-dynamics, row-finite higher-rank graphs, and regular product systems. 

In this talk we will build a parametrisation of the gauge-invariant ideals, starting from first principles and gradually increasing in complexity. We will pay particular attention to the higher-rank subtleties that are not witnessed in Katsura's theorem, and comment on the applications.
 

Tue, 23 Apr 2024
15:00
L6

Approximate lattices: structure and beyond

Simon Machado
Abstract

Approximate lattices are aperiodic generalisations of lattices in locally compact groups. They were first introduced in abelian groups by Yves Meyer before being studied as mathematical models for quasi-crystals. Since then their structure has been thoroughly investigated in both abelian and non-abelian settings.

In this talk I will survey what is known of the structure of approximate lattices. I will highlight some objects - such as a notion of cohomology sitting between group cohomology and bounded cohomology - that appear in their study. I will also formulate open problems and conjectures related to approximate lattices. 

Tue, 23 Apr 2024

14:30 - 15:00
L3

Topology optimisation method for fluid flow devices using the Multiple Reference Frame approach

Diego Hayashi Alonso
(Polytechnic School of the University of São Paulo)
Abstract

The main component of flow machines is the rotor; however, there may also be stationary parts surrounding the rotor, which are the diffuser blades. In order to consider these two parts simultaneously, the most intuitive approach is to perform a transient flow simulation; however, the computational cost is relatively high. Therefore, one possible approach is the Multiple Reference Frame (MRF) approach, which considers two directly coupled zones: one for the rotating reference frame (for the rotor blades) and one for the stationary reference frame (for the diffuser blades). When taking into account topology optimisation, some changes are required in order to take both rotating and stationary parts simultaneously in the design, which also leads to changes in the composition of the multi-objective function. Therefore, the topology optimisation method is formulated for MRF while also proposing this new multi-objective function. An integer variable-based optimisation algorithm is considered, with some adjustments for the MRF case. Some numerical examples are presented.

Tue, 23 Apr 2024

14:00 - 15:00
L4

A (quasi)-polynomial Bogolyubov theorem for finite simple groups

Noam Lifshitz
(Hebrew University of Jerusalem)
Abstract

We show that there exists $C>1$, such that if $A$ is a subset of a non-alternating finite simple group $G$ of density $|A|/|G|= \alpha$, then $AA^{-1}AA^{-1}$ contains a subgroup of density at least $\alpha^{C}$. We will also give a corresponding (slightly weaker) statement for alternating groups.

To prove our results we introduce new hypercontractive inequalities for simple groups. These allow us to show that the (non-abelian) Fourier spectrum of indicators of 'global' sets are concentrated on the high-dimensional irreducible representations. Here globalness is a pseudorandomness notion reminiscent of the notion of spreadness.

The talk is based on joint works with David Ellis, Shai Evra, Guy Kindler, Nathan Lindzey, and Peter Keevash, and Dor Minzer. No prior knowledge of representation theory will be assumed.

Tue, 23 Apr 2024

14:00 - 14:30
L3

Reinforcement Learning for Combinatorial Optimization: Job-Shop Scheduling and Vehicle Routing Problem Cases

Zangir Iklassov
( Mohamed bin Zayed University of Artificial Intelligence)
Abstract

Our research explores the application of reinforcement learning (RL) strategies to solve complex combinatorial research problems, specifically the Job-shop Scheduling Problem (JSP) and the Stochastic Vehicle Routing Problem with Time Windows (SVRP). For JSP, we utilize Curriculum Learning (CL) to enhance the performance of dispatching policies. This approach addresses the significant optimality gap in existing end-to-end solutions by structuring the training process into a sequence of increasingly complex tasks, thus facilitating the handling of larger, more intricate instances. Our study introduces a size-agnostic model and a novel strategy, the Reinforced Adaptive Staircase Curriculum Learning (RASCL), which dynamically adjusts difficulty levels during training, focusing on the most challenging instances. Experimental results on Taillard and Demirkol datasets show that our approach reduces the average optimality gap to 10.46% and 18.85%, respectively.

For SVRP, we propose an end-to-end framework employing an attention-based neural network trained through RL to minimize routing costs while addressing uncertain travel costs and demands, alongside specific customer delivery time windows. This model outperforms the state-of-the-art Ant-Colony Optimization algorithm by achieving a 1.73% reduction in travel costs and demonstrates robustness across diverse environmental settings, making it a valuable baseline for future research. Both studies mark advancements in the application of machine learning techniques to operational research.

Tue, 23 Apr 2024

14:00 - 15:00
L5

Symmetric spaces, where Topology meets Representation Theory

Dmitriy Rumynin
(University of Warwick)
Abstract

We will use Representation Theory to calculate systematically and efficiently the topological invariants of compact Lie groups and homogeneous spaces.
 

Most of the talk is covered by our second paper on ArXiv with John Jones and Adam Thomas, who are both at Warwick. The paper is part of the ongoing project to study the topological invariants of the four exceptional Rosenfeld projective planes.

Tue, 23 Apr 2024
13:00
L2

What's done cannot be undone: non-invertible symmetries

Shu-Heng Shao
(Stony Brook University)
Abstract

In massless QED, we find that the classical U(1) chiral symmetry is not completely broken by the Adler-Bell-Jackiw anomaly. Rather, it is resurrected as a generalized global symmetry labeled by the rational numbers. Intuitively, this new global symmetry in QED is a composition of the naive axial rotation and a fractional quantum Hall state. The conserved symmetry operators do not obey a group multiplication law, but a non-invertible fusion algebra. We further generalize our construction to QCD, and show that the neutral pion decay can be derived from a matching condition of the non-invertible global symmetry.

Mon, 22 Apr 2024

16:30 - 17:30
L4

The curvature-dimension condition and the measure contraction property in sub-Finsler geometry.

Tommaso Rossi
(INRIA)
Abstract

The curvature-dimension condition, CD(K,N) for short, and the (weaker) measure contraction property, or MCP(K,N), are two synthetic notions for a metric measure space to have Ricci curvature bounded from below by K and dimension bounded from above by N. In this talk, we investigate the validity of these conditions in sub-Finsler geometry, which is a wide generalization of Finsler and sub-Riemannian geometry. Firstly, we show that sub-Finsler manifolds equipped with a smooth strongly convex norm and with a positive smooth measure can not satisfy the CD(K,N) condition for any K and N. Secondly, we focus on the sub-Finsler Heisenberg group, where we show that, on the one hand, the CD(K,N) condition can not hold for any reference norm and, on the other hand, the MCP(K,N) may hold or fail depending on the regularity of the reference norm. 

Mon, 22 Apr 2024
16:00
L2

On Unique Sums in Abelian Groups

Benjamin Bedert
(University of Oxford)
Abstract

In this talk, we will study the problem in additive combinatorics of determining for a finite Abelian group $G$ the size of its smallest subset $A\subset G$ that has no unique sum, meaning that for every two $a_1,a_2\in A$ we can write $a_1+a_2=a’_1+a’_2$ for different $a’_1,a’_2\in A$. We begin by using classical rectification methods to obtain the previous best lower bounds of the form $|A|\gg \log p(G)$, which stood for 50 years. Our main aim is to outline the proof of a recent improvement and discuss some of its key notions such as additive dimension and the density increment method. This talk is based on Bedert, B. On Unique Sums in Abelian Groups. Combinatorica (2023).

Mon, 22 Apr 2024
15:30
L5

Examples of topologically unknotted tori

Andras Juhasz
((Oxford University))
Abstract

I will discuss three different constructions of smooth tori in S^4 whose complements have fundamental group Z: turned 1-twist-spun tori due to Boyle, the union of a ribbon disc with a genus one Seifert surface constructed by Cochran and Davis, and certain tori with four critical points. They are all topologically unknotted, but it is not known whether they are smoothly standard, except for tori with four critical points whose middle level set is a split link. The branched double cover of S^4 along any of these surfaces is a potentially exotic copy of S^2 x S^2, though, in the case of Boyle's example, it cannot be distinguished from the standard S^2 x S^2 using Seiberg-Witten invariants. This is joint work with Mark Powell.

Mon, 22 Apr 2024
15:30
L3

From the Quintic model to signature volatility models: fast pricing and hedging with Fourier

Prof Eduardo Abi Jaber
(Centre de Mathématiques Appliquées, École polytechnique )
Abstract

We will introduce the Quintic Ornstein-Uhlenbeck model that jointly calibrates SPX-VIX options with a particular focus on its mathematical tractability namely for fast pricing SPX options using Fourier techniques. Then, we will consider the more general class of  stochastic volatility models where the dynamics of the volatility are given by a possibly infinite linear combination of the elements of the time extended signature of a Brownian motion. First, we show that the model is remarkably universal, as it includes, but is not limited to, the celebrated Stein-Stein, Bergomi, and Heston models, together with some path-dependent variants. Second, we derive the joint characteristic functional of the log-price and integrated variance provided that some infinite-dimensional extended tensor algebra valued Riccati equation admits a solution. This allows us to price and (quadratically) hedge certain European and path-dependent options using Fourier inversion techniques. We highlight the efficiency and accuracy of these Fourier techniques in a comprehensive numerical study.

Mon, 22 Apr 2024
14:15
L4

Refined Harder-Narasimhan filtrations in moduli theory

Andres Ibanez-Nunez
(Oxford)
Abstract

We introduce a notion of refined Harder-Narasimhan filtration, defined abstractly for algebraic stacks satisfying natural conditions. Examples include moduli stacks of objects at the heart of a Bridgeland stability condition, moduli stacks of K-semistable Fano varieties, moduli of principal bundles on a curve, and quotient stacks. We will explain how refined Harder-Narasimhan filtrations are closely related both to stratifications and to the asymptotics of certain analytic flows, relating and expanding work of Kirwan and Haiden-Katzarkov-Kontsevich-Pandit, respectively. In the case of quotient stacks by the action of a torus, the refined Harder-Narasimhan filtration can be computed in terms of convex geometry.

Mon, 22 Apr 2024

14:00 - 15:00
Lecture Room 3

Quantization of Bandlimited Graph Signals

Hanna Veselovska
(Technical University of Munich)
Abstract

Graph signals provide a natural representation of data in many applications, such as social networks, web information analysis, sensor networks, and machine learning. Graph signal & data processing is currently an active field of mathematical research that aims to extend the well-developed tools for analyzing conventional signals to signals on graphs while exploiting the underlying connectivity. A key challenge in this context is the problem of quantization, that is, finding efficient ways of representing the values of graph signals with only a finite number of bits.

In this talk, we address the problem of quantizing bandlimited graph signals. We introduce two classes of noise-shaping algorithms for graph signals that differ in their sampling methodologies. We demonstrate that these algorithms can efficiently construct quantized representatives of bandlimited graph-based signals with bounded amplitude.

Inspired by the results of Zhang et al. in 2022, we provide theoretical guarantees on the relative error between the true signal and its quantized representative for one of the algorithms.
As will be discussed, the incoherence of the underlying graph plays an important role in the quantization process. Namely, bandlimited signals supported on graphs of lower incoherence allow for smaller relative errors. We support our findings with various numerical experiments showcasing the performance of the proposed quantization algorithms for bandlimited signals defined on graphs with different degrees of incoherence.

This is joint work with Felix Krahmer (Technical University of Munich), He Lyu (Meta), Rayan Saab (University of California San Diego), and Rongrong Wang (Michigan State University).

Mon, 22 Apr 2024

13:00 - 14:00
N3.12

Taboo Topics

Abstract

Join us for our first event of term to discuss those topics which are slightly taboo. We’ll be talking about periods, pregnancy, chronic illness, gender identity... This event is open to all but we will be taking extra steps to make sure it is a safe space for everyone. 

Thu, 18 Apr 2024

16:00 - 17:00
C2

Transportation Cost Spaces and their embeddings in L_1 spaces

Thomas Schulmprecht
(Texas A&M University)
Abstract

Transportation cost spaces are of high theoretical interest,  and they also are fundamental in applications in many areas of applied mathematics, engineering, physics, computer science, finance, and social sciences. 

Obtaining low distortion embeddings of transportation cost spaces into L_1 became important in the problem of finding nearest points, an important research subject in theoretical computer science. After introducing

these spaces we will present some results on upper  and lower estimates of the distortion of embeddings of Transportation Cost Spaces into L_1

Thu, 11 Apr 2024
18:00
The Auditorium, Citigroup Centre, London, E14 5LB

0DTEs: Trading, Gamma Risk and Volatility Propagation

Prof Grigory Vilkov
(Frankfurt School of Finance & Management)
Further Information

Registration is free but required. Register Here.

Abstract

Investors fear that surging volumes in short-term, especially same-day expiry (0DTE), options can destabilize markets by propagating large price jumps. Contrary to the intuition that 0DTE sellers predominantly generate delta-hedging flows that aggravate market moves, high open interest gamma in 0DTEs does not propagate past volatility. 0DTEs and underlying markets have become more integrated over time, leading to a marginally stronger link between the index volatility and 0DTE trading. Nonetheless, intraday 0DTE trading volume shocks do not amplify recent past index returns, inconsistent with the view that 0DTEs market growth intensifies market fragility.

About the speaker
Grigory Vilkov, Professor of Finance at the Frankfurt School of Finance and Management, holds an MBA from the University of Rochester and a Ph.D. from INSEAD, with further qualifications from Goethe University Frankfurt. He has been a professor at both Goethe University and the University of Mannheim.
His academic work focused on improving long-term portfolio strategies by building better expectations of risks, returns, and their dynamics. He is known for practical innovations in finance, such as developing forward-looking betas marketed by IvyDB OptionMetrics, establishing implied skewness and generalized lower bounds as cross-sectional stock characteristics, and creating measures for climate change exposure from earnings calls. His current research encompasses factor dispersions, factor and sector rotation, asset allocation with implied data, and machine learning in options analysis. 

Register Here.

Mon, 08 Apr 2024

11:00 - 12:00
Lecture Room 3

Heavy-Tailed Large Deviations and Sharp Characterization of Global Dynamics of SGDs in Deep Learning

Chang-Han Rhee
(Northwestern University, USA)
Abstract

While the typical behaviors of stochastic systems are often deceptively oblivious to the tail distributions of the underlying uncertainties, the ways rare events arise are vastly different depending on whether the underlying tail distributions are light-tailed or heavy-tailed. Roughly speaking, in light-tailed settings, a system-wide rare event arises because everything goes wrong a little bit as if the entire system has conspired up to provoke the rare event (conspiracy principle), whereas, in heavy-tailed settings, a system-wide rare event arises because a small number of components fail catastrophically (catastrophe principle). In the first part of this talk, I will introduce the recent developments in the theory of large deviations for heavy-tailed stochastic processes at the sample path level and rigorously characterize the catastrophe principle for such processes. 
The empirical success of deep learning is often attributed to the mysterious ability of stochastic gradient descents (SGDs) to avoid sharp local minima in the loss landscape, as sharp minima are believed to lead to poor generalization. To unravel this mystery and potentially further enhance such capability of SGDs, it is imperative to go beyond the traditional local convergence analysis and obtain a comprehensive understanding of SGDs' global dynamics within complex non-convex loss landscapes. In the second part of this talk, I will characterize the global dynamics of SGDs building on the heavy-tailed large deviations and local stability framework developed in the first part. This leads to the heavy-tailed counterparts of the classical Freidlin-Wentzell and Eyring-Kramers theories. Moreover, we reveal a fascinating phenomenon in deep learning: by injecting and then truncating heavy-tailed noises during the training phase, SGD can almost completely avoid sharp minima and hence achieve better generalization performance for the test data.  

This talk is based on the joint work with Mihail Bazhba, Jose Blanchet, Bohan Chen, Sewoong Oh, Zhe Su, Xingyu Wang, and Bert Zwart.
 

Mon, 08 Apr 2024

11:00 - 12:00
Lecture Room 3

Heavy-Tailed Large Deviations and Sharp Characterization of Global Dynamics of SGDs in Deep Learning

Chang-Han Rhee
(Northwestern University, USA)
Abstract

While the typical behaviors of stochastic systems are often deceptively oblivious to the tail distributions of the underlying uncertainties, the ways rare events arise are vastly different depending on whether the underlying tail distributions are light-tailed or heavy-tailed. Roughly speaking, in light-tailed settings, a system-wide rare event arises because everything goes wrong a little bit as if the entire system has conspired up to provoke the rare event (conspiracy principle), whereas, in heavy-tailed settings, a system-wide rare event arises because a small number of components fail catastrophically (catastrophe principle). In the first part of this talk, I will introduce the recent developments in the theory of large deviations for heavy-tailed stochastic processes at the sample path level and rigorously characterize the catastrophe principle for such processes. 

The empirical success of deep learning is often attributed to the mysterious ability of stochastic gradient descents (SGDs) to avoid sharp local minima in the loss landscape, as sharp minima are believed to lead to poor generalization. To unravel this mystery and potentially further enhance such capability of SGDs, it is imperative to go beyond the traditional local convergence analysis and obtain a comprehensive understanding of SGDs' global dynamics within complex non-convex loss landscapes. In the second part of this talk, I will characterize the global dynamics of SGDs building on the heavy-tailed large deviations and local stability framework developed in the first part. This leads to the heavy-tailed counterparts of the classical Freidlin-Wentzell and Eyring-Kramers theories. Moreover, we reveal a fascinating phenomenon in deep learning: by injecting and then truncating heavy-tailed noises during the training phase, SGD can almost completely avoid sharp minima and hence achieve better generalization performance for the test data.  

 

This talk is based on the joint work with Mihail Bazhba, Jose Blanchet, Bohan Chen, Sewoong Oh, Zhe Su, Xingyu Wang, and Bert Zwart.

Mon, 08 Apr 2024

11:00 - 12:00
Lecture Room 3

Heavy-Tailed Large Deviations and Sharp Characterization of Global Dynamics of SGDs in Deep Learning

Chang-Han Rhee
(Northwestern University, USA)
Abstract

While the typical behaviors of stochastic systems are often deceptively oblivious to the tail distributions of the underlying uncertainties, the ways rare events arise are vastly different depending on whether the underlying tail distributions are light-tailed or heavy-tailed. Roughly speaking, in light-tailed settings, a system-wide rare event arises because everything goes wrong a little bit as if the entire system has conspired up to provoke the rare event (conspiracy principle), whereas, in heavy-tailed settings, a system-wide rare event arises because a small number of components fail catastrophically (catastrophe principle). In the first part of this talk, I will introduce the recent developments in the theory of large deviations for heavy-tailed stochastic processes at the sample path level and rigorously characterize the catastrophe principle for such processes. 
The empirical success of deep learning is often attributed to the mysterious ability of stochastic gradient descents (SGDs) to avoid sharp local minima in the loss landscape, as sharp minima are believed to lead to poor generalization. To unravel this mystery and potentially further enhance such capability of SGDs, it is imperative to go beyond the traditional local convergence analysis and obtain a comprehensive understanding of SGDs' global dynamics within complex non-convex loss landscapes. In the second part of this talk, I will characterize the global dynamics of SGDs building on the heavy-tailed large deviations and local stability framework developed in the first part. This leads to the heavy-tailed counterparts of the classical Freidlin-Wentzell and Eyring-Kramers theories. Moreover, we reveal a fascinating phenomenon in deep learning: by injecting and then truncating heavy-tailed noises during the training phase, SGD can almost completely avoid sharp minima and hence achieve better generalization performance for the test data.  

This talk is based on the joint work with Mihail Bazhba, Jose Blanchet, Bohan Chen, Sewoong Oh, Zhe Su, Xingyu Wang, and Bert Zwart.

 

 

Bio:

Chang-Han Rhee is an Assistant Professor in Industrial Engineering and Management Sciences at Northwestern University. Before joining Northwestern University, he was a postdoctoral researcher at Centrum Wiskunde & Informatica and Georgia Tech. He received his Ph.D. from Stanford University. His research interests include applied probability, stochastic simulation, experimental design, and the theoretical foundation of machine learning. His research has been recognized with the 2016 INFORMS Simulation Society Outstanding Publication Award, the 2012 Winter Simulation Conference Best Student Paper Award, the 2023 INFORMS George Nicholson Student Paper Competition (2nd place), and the 2013 INFORMS George Nicholson Student Paper Competition (finalist). Since 2022, his research has been supported by the NSF CAREER Award.  
 

Thu, 04 Apr 2024

16:00 - 17:00
Virtual

Differential Equation-inspired Deep Learning for Node Classification and Spatiotemporal Forecasting

Noseong Park
Further Information
Abstract

Scientific knowledge, written in the form of differential equations, plays a vital role in various deep learning fields. In this talk, I will present a graph neural network (GNN) design based on reaction-diffusion equations, which addresses the notorious oversmoothing problem of GNNs. Since the self-attention of Transformers can also be viewed as a special case of graph processing, I will present how we can enhance Transformers in a similar way. I will also introduce a spatiotemporal forecasting model based on neural controlled differential equations (NCDEs). NCDEs were designed to process irregular time series in a continuous manner and for spatiotemporal processing, it needs to be combined with a spatial processing module, i.e., GNN. I will show how this can be done. 

Tue, 26 Mar 2024
16:00
Quillen Room

Global Galois representations with prescribed local monodromy

Lambert A'Campo
(MPIM Bonn)
Abstract

The compatibility of local and global Langlands correspondences is a central problem in algebraic number theory. A possible approach to resolving it relies on the existence of global Galois representations with prescribed local monodromy.  I will provide a partial solution by relating the question to its topological analogue. Both the topological and arithmetic version can be solved using the same family of projective hypersurfaces, which was first studied by Dwork.

Mon, 25 Mar 2024
15:00
L4

Uhlenbeck compactness theorems and isometric immersions

Professor Siran Li
(Shanghai Jiao Tong University)
Abstract

In this short course, we survey the celebrated weak and strong compactness theorems proved by Karen Uhlenbeck in 1982. These results are fundamental to the gauge theory and have found numerous applications to geometry, topology, and theoretical physics. The proof is based on the ingenious idea of putting connections into ``Uhlenbeck--Coulomb gauge'', which enables the use of standard elliptic and/or nonlinear PDE techniques, as well as involved local-to-global patching arguments. We aim at giving detailed explanation of the proof, and we shall also discuss the relation between Uhlenbeck's compactness and the classical geometric problem of isometric immersions of submanifolds into Euclidean spaces.

Thu, 21 Mar 2024

16:00 - 17:00
Virtual

Data-driven surrogate modelling for astrophysical simulations: from stellar winds to supernovae

Jeremy Yates and Frederik De Ceuster
(University College London)
Further Information
Abstract

The feedback loop between simulations and observations is the driving force behind almost all discoveries in astronomy. However, as technological innovations allow us to create ever more complex simulations and make ever more detailed observations, it becomes increasingly difficult to combine the two: since we cannot do controlled experiments, we need to simulate whatever we can observe. This requires efficient simulation pipelines, including (general-relativistic-)(magneto-)hydrodynamics, particle physics, chemistry, and radiation transport. In this talk, we explore the challenges associated with these modelling efforts and discuss how adopting data-driven surrogate modelling and proper control over model uncertainties, promises to unlock a gold mine of future discoveries. For instance, the application to stellar wind simulations can teach us about the origin of chemistry in our Universe and the building blocks for life, while supernova simulations can reveal exotic states of matter and elucidate the formation black holes.

Thu, 21 Mar 2024

16:00 - 17:00
C2

Biexact von Neumann algebras

Changying Ding
(UCLA)
Abstract

The notion of biexactness for groups was introduced by Ozawa in 2004 and has since become a major tool used for studying solidity of von Neumann algebras. We introduce the notion of biexactness for von Neumann algebras, which allows us to place many previous solidity results in a more systematic context, and naturally leads to extensions of these results. We will also discuss examples of solid factors that are not biexact. This is a joint work with Jesse Peterson.