Date
Thu, 22 May 2014
14:00
Location
L5
Speaker
Dr Colin Cotter
Organisation
Imperial College, London

We describe discretisations of the shallow water equations on

the sphere using the framework of finite element exterior calculus. The

formulation can be viewed as an extension of the classical staggered

C-grid energy-enstrophy conserving and

energy-conserving/enstrophy-dissipating schemes which were defined on

latitude-longitude grids. This work is motivated by the need to use

pseudo-uniform grids on the sphere (such as an icosahedral grid or a

cube grid) in order to achieve good scaling on massively parallel

computers, and forms part of the multi-institutional UK “Gung Ho”

project which aims to design a next generation dynamical core for the

Met Office Unified Model climate and weather prediction system. The

rotating shallow water equations are a single layer model that is

used to benchmark the horizontal component of numerical schemes for

weather prediction models.

We show, within the finite element exterior calculus framework, that it

is possible

to build numerical schemes with horizontal velocity and layer depth that

have a con-

served diagnostic potential vorticity field, by making use of the

geometric properties of the scheme. The schemes also conserve energy and

enstrophy, which arise naturally as conserved quantities out of a

Poisson bracket formulation. We show that it is possible to modify the

discretisation, motivated by physical considerations, so that enstrophy

is dissipated, either by using the Anticipated Potential Vorticity

Method, or by inducing stabilised advection schemes for potential

vorticity such as SUPG or higher-order Taylor-Galerkin schemes. We

illustrate our results with convergence tests and numerical experiments

obtained from a FEniCS implementation on the sphere.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.