Date
Thu, 02 Jun 2016
Time
16:00 - 17:00
Location
L3
Speaker
Shailesh Naire
Organisation
Keele

Surfactants are chemicals that adsorb onto the air-liquid interface and lower the surface tension there. Non-uniformities in surfactant concentration result in surface tension gradients leading to a surface shear stress, known as a Marangoni stress. This stress, if sufficiently large, can influence the flow at the interface.

Surfactants are ubiquitous in many aspects of technology and industry to control the wetting properties of liquids due to  their ability to modify surface tension. They are used in detergents, crop spraying, coating processes and oil recovery. Surfactants also occur naturally, for example in the mammalian lung. They reduce the surface tension within the liquid lining the airways, which assists in preventing the collapse of the smaller airways. In the lungs of premature infants, the quantity of surfactant produced is insufficient as the lungs are under- developed. This leads to a respiratory distress syndrome which is treated by Surfactant Replacement Therapy.

Motivated by this medical application, we theoretically investigate a model problem involving the spreading of a drop laden with an insoluble surfactant down an inclined and pre-wetted substrate.  Our focus is in understanding the mechanisms behind a “fingering” instability observed experimentally during the spreading process. High-resolution numerics reveal a multi-region asymptotic wave-like structure of the spreading droplet. Approximate solutions for each region is then derived using asymptotic analysis. In particular, a quasi-steady similarity solution is obtained for the leading edge of the droplet. A linear stability analysis of this region shows that the base state is linearly unstable to long-wavelength perturbations. The Marangoni effect is shown to be the dominant driving mechanism behind this instability at small wavenumbers. A small wavenumber stability criterion is derived and it's implication on the onset of the fingering instability will be discussed.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:45.