Date
Tue, 19 Jan 2016
14:30
Location
L6
Speaker
Paul Seymour
Organisation
Princeton

A "hole" in a graph is an induced subgraph which is a cycle of length > 3. The perfect graph theorem says that if a graph has no odd holes and no odd antiholes (the complement of a hole), then its chromatic number equals its clique number; but unrestricted graphs can have clique number two and arbitrarily large chromatic number. There is a nice question half-way between them - for which classes of graphs is it true that a bound on clique number implies some (larger) bound on chromatic number? Call this being "chi-bounded".

Gyarfas proposed several conjectures of this form in 1985, and recently there has been significant progress on them. For instance, he conjectured

  • graphs with no odd hole are chi-bounded (this is true);
  • graphs with no hole of length >100 are chi-bounded (this is true);
  • graphs with no odd hole of length >100 are chi-bounded; this is still open but true for triangle-free graphs.

We survey this and several related results. This is joint with Alex Scott and partly with Maria Chudnovsky.

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 15:24.