Date
Thu, 10 Mar 2005
16:30
Location
DH Common Room
Speaker
Mark Groves
Organisation
Loughborough University

The classical gravity-capillary water-wave problem is the

study of the irrotational flow of a three-dimensional perfect

fluid bounded below by a flat, rigid bottom and above by a

free surface subject to the forces of gravity and surface

tension. In this lecture I will present a survey of currently

available existence theories for travelling-wave solutions of

this problem, that is, waves which move in a specific

direction with constant speed and without change of shape.

The talk will focus upon wave motions which are truly

three-dimensional, so that the free surface of the water

exhibits a two-dimensional pattern, and upon solutions of the

complete hydrodynamic equations for water waves rather than

model equations. Specific examples include (a) doubly

periodic surface waves; (b) wave patterns which have a

single- or multi-pulse profile in one distinguished

horizontal direction and are periodic in another; (c)

so-called 'fully-localised solitary waves' consisting of a

localised trough-like disturbance of the free surface which

decays to zero in all horizontal directions.

I will also sketch the mathematical techniques required to

prove the existence of the above waves. The key is a

formulation of the problem as a Hamiltonian system with

infinitely many degrees of freedom together with an

associated variational principle.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.