Date
Thu, 01 May 2003
Time
14:00 - 15:00
Location
Comlab
Speaker
Dr Danny Ralph
Organisation
University of Cambridge

Electricity markets facilitate pricing and delivery of wholesale power.

Generators submit bids to an Independent System Operator (ISO) to indicate

how much power they can produce depending on price. The ISO takes these bids

with demand forecasts and minimizes the total cost of power production

subject to feasibility of distribution in the electrical network.

\\

\\

Each generator can optimise its bid using a bilevel program or

mathematical program with equilibrium (or complementarity) constraints, by

taking the ISOs problem, which contains all generators bid information, at

the lower level. This leads immediately to a game between generators, where

a Nash equilibrium - at which each generator's bid maximises its profit

provided that none of the other generators changes its bid - is sought.

\\

\\

In particular, we examine the idealised model of Berry et al (Utility

Policy 8, 1999), which gives a bilevel game that can be modelled as an

"equilibrium problem with complementarity constraints" or EPCC.

Unfortunately, like bilevel games, EPCCs on networks may not have Nash

equilibria in the (common) case when one or more of links of the network is

saturated (at maximum capacity). Nevertheless we explore some theory and

algorithms for this problem, and discuss the economic implications of

numerical examples where equilibria are found for small electricity

networks.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.