Date
Tue, 06 Mar 2012
13:30
Location
DH 1st floor SR
Speaker
Emma Warneford
Organisation
OCIAM

Large-scale zonal jets are observed in a wide range of geophysical and astrophysical flows; most strikingly in the atmospheres of the Jovian gas giant planets. Jupiter's upper atmosphere is highly turbulent, with many small vortices, and strong westerly winds at the equator. We consider the thermal shallow water equations as a model for Jupiter's upper atmosphere. Originally proposed for the terrestrial atmosphere and tropical oceans, this model extends the conventional shallow water equations by allowing horizontal temperature variations with a modified Newtonian cooling for the temperature field. We perform numerical simulations that reproduce many of the key features of Jupiter’s upper atmosphere. However, the simulations take a long time to run because their time step is severely constrained by the inertia-gravity wave speed. We filter out the inertia-gravity waves by forming the quasigeostrophic limit, which describes the rapidly rotating (small Rossby number) regime. We also show that the quasigeostrophic energy equation is the quasigeostrophic limit of the thermal shallow water pseudo-energy equation, analogous to the derivation of the acoustic energy equation from gas dynamics. We perform numerical simulations of the quasigeostrophic equations, which again reproduce many of the key features of Jupiter’s upper atmosphere. We gain substantial performance increases by running these simulations on graphical processing units (GPUs).

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.