Fri, 03 Nov 2023

15:00 - 16:00
L5

The Expected Betti Numbers of Preferential Attachment Clique Complexes

Chunyin Siu
(Cornell)
Further Information

Chunyin Siu (Alex) is a PhD candidate at Cornell University at the Center for Applied Mathematics, and is a Croucher scholar (2019) and a Youde scholar (2018).

His primary research interests lie in the intersection of topological data analysis, network analysis, topological statistics and computational geometry. He is advised by Prof. Gennady Samorodnitsky. Before coming to Cornell University, he was a MPhil. student advised by Prof. Ronald (Lokming) Lui at the Chinese University of Hong Kong.

Abstract

The preferential attachment model is a natural and popular random graph model for a growing network that contains very well-connected ``hubs''. Despite intense interest in the higher-order connectivity of these networks, their Betti numbers at higher dimensions have been largely unexplored.

In this talk, after a brief survey on random topology, we study the clique complexes of preferential attachment graphs, and we prove the asymptotics of the expected Betti numbers. If time allows, we will briefly discuss their homotopy connectedness as well. This is joint work with Gennady Samorodnitsky, Christina Lee Yu and Rongyi He, and it is based on the preprint https://arxiv.org/abs/2305.11259

Thu, 11 Jun 2020

14:00 - 15:00

Dense networks that do not synchronize and sparse ones that do.

Alex Townsend
(Cornell)
Abstract

Consider a network of identical phase oscillators with sinusoidal coupling. How likely are the oscillators to globally synchronize, starting from random initial phases? One expects that dense networks have a strong tendency to synchronize and the basin of attraction for the synchronous state to be the whole phase space. But, how dense is dense enough? In this (hopefully) entertaining Zoom talk, we use techniques from numerical linear algebra and computational Algebraic geometry to derive the densest known networks that do not synchronize and the sparsest networks that do. This is joint work with Steven Strogatz and Mike Stillman.


[To be added to our seminars mailing list, or to receive a Zoom invitation for a particular seminar, please contact @email.]

Tue, 28 Jan 2020

14:15 - 15:15
L4

Soficity and variations on Higman's group.

Prof. Tim Riley
(Cornell)
Further Information


A group is sofic when every finite subset can be well approximated in a finite symmetric group. The outstanding question, due to Gromov, is whether every group is sofic.
Helfgott and Juschenko argued that a celebrated group constructed by Higman is unlikely to be sofic because its soficity would imply the existence of some seemingly pathological functions.  I will describe joint work with Martin Kassabov and Vivian Kuperberg in which we construct variations on Higman's group and explore their soficity.  
 

Mon, 14 Oct 2019

14:15 - 15:15
L4

Local stability of Einstein metrics under the Ricci iteration

Tim Buttsworth
(Cornell)
Further Information

A Ricci iteration is a sequence of Riemannian metrics on a manifold such that every metric in the sequence is equal to the Ricci curvature of the next metric. These sequences of metrics were introduced by Rubinstein to provide a discretisation of the Ricci flow. In this talk, I will discuss the relationship between the Ricci iteration and the Ricci flow. I will also describe a recent result concerning the existence and convergence of Ricci iterations close to certain Einstein metrics. (Joint work with Max Hallgren)

Mon, 24 Apr 2017
12:45
L3

Computational Algebraic Geometry meets String Theory: the search for rigid divisors and computing sheaf cohomology on Calabi-Yau hypersurfaces of toric 4-folds.

Mike Stillman
(Cornell)
Abstract

Calabi-Yau 3-folds play a large role in string theory.  Cohomology of sheaves on such varieties has many uses in string theory, including counting the number of particles or fields in a theory, as well as to help identify terms in the superpotential that determines the equations of motion of the corresponding string theory, and many other uses as well.  As a computational algebraic geometer, string theory provides a rich source of new computational problems to solve.

In this talk, we focus on the search for rigid divisors on these Calabi-Yau hypersurfaces of toric varieties.  We have had methods to compute sheaf cohomology on these varieties for many years now (Eisenbud-Mustata-Stillman, around 2000), but these methods fail for many of the examples of interest, in that they take a very long time, or the software (wisely) refuses to try!

We provide techniques and formulas for the sheaf cohomology of certain divisors of interest in string theory, that other current methods cannot handle.  Along the way, we describe a Macaulay2 package for computing with these objects, and show its use on examples.

This is joint work with Andreas Braun, Cody Long, Liam McAllister, and Benjamin Sung.

 
 
 
Mon, 28 Nov 2016
12:45
L3

Understanding the Landscape of N=2 Super-Conformal Field Theories

Mario Martone
(Cornell)
Abstract

In this talk I will argue that a systematic classification of 4d N=2 superconformal field theories is possible through a careful analysis of the geometry of their Coulomb branches. I will carefully describe this general framework and then carry out the classification explicitly in the rank-1, that is one complex dimensional Coulomb branch, case.  We find that the landscape of rank-1 theories is still largely unexplored and make a strong case for the existence of many new rank-1 SCFTs, almost doubling the number of theories already known in the literature. The existence of 4 of them has been recently confirmed using alternative methods and others have an enlarged N=3, supersymmetry. 

While our study focuses on Coulomb Branch geometries, we can extract much more information about these SCFTs. I will spend the last part of my talk outlining what else we can learn and the extent in which our study can be complementary to other method to study SCFTs (Conformal Bootstrap above all!).

 
 
Wed, 04 Jun 2014
10:30
N3.12

Separability in the Hydra Groups

Kristen Pueschel
(Cornell)
Abstract

Riley and Dison's hydra groups are a family of group and subgroup pairs $(G_k, H_k)$ for which the subgroup $H_k$ has distortion like the $k$-th Ackermann function. One wants to know if finite quotients can distinguish elements that are not in $H_k$, as a positive answer would allow you to construct a hands-on family of finitely presented, residually finite groups with arbitrarily large Dehn functions. I'll explain why we get a negative answer.

Wed, 07 May 2014

16:00 - 17:00
C6

Brady's theorem about subgroups of hyperbolic groups

Yash Lodha
(Cornell)
Abstract

Brady showed that there are hyperbolic groups with non-hyperbolic finitely presented subgroups. I will present a new construction of this kind using Bestvina-Brady Morse theory.

Mon, 03 Feb 2014
14:15
L5

The topology of toric origami manifolds

Tara Holm
(Cornell)
Abstract

A folded symplectic form on a manifold is a closed 2-form with the mildest possible degeneracy along a hypersurface. A special class of folded symplectic manifolds are the origami manifolds. In the classical case, toric symplectic manifolds can classified by their moment polytope, and their topology (equivariant cohomology) can be read directly from the polytope. In this talk we examine the toric origami case: we will recall how toric origami manifolds can also be classified by their combinatorial moment data, and present some theorems, almost-theorems, and conjectures about the topology of toric origami manifolds.

Subscribe to Cornell