Fri, 06 Dec 2013
14:15
C6

Stick-slip on ice streams: the effects of viscoelasticity

Daniel Goldberg
(Edinburgh)
Abstract

Stick-slip behavior is a distinguishing characteristic of the flow of Whillans Ice Stream. Distinct from stick-slip on northern hemisphere glaciers, which is generally attributed to supraglacial melt, the behavior is thought be be controlled by fast processes at the bed and by tidally-induced stress. Modelling approaches to studying this phenomenon typically consider ice to be an elastically-deforming solid (e.g. Winberry et al, 2008; Sergienko et al, 2009). However, there remains a question of whether irreversible, i.e. viscous, deformation is important to the stick-slip process; and furthermore whether the details of stick-slip oscillations are important to ice stream evolution on longer time scales (years to decades).

To address this question I use two viscoelastic models of varying complexity. The first is a modification to the simple block-and-slider models traditionally used to examine earthquake processes on a very simplistic fashion. Results show that the role of viscosity in stick-slip depends on the dominant stress balance. These results are then considered in the context of a continuum description of a viscoelastic ice stream with a rate-weakening base capable of exhibiting stick-slip behavior. With the continuum model we examine the spatial and temporal aspects of stick-slip, their dependence on viscous effects, and how this behavior impacts the mean flow. Different models for the evolution of basal shear stress are examined in the experiments, with qualitatively similar results. A surprising outcome is that tidal effects, while greatly affecting the spectrum of the stick-slip cycle, may have relatively little effect on the mean flow.

Thu, 16 May 2013

17:00 - 18:00
L3

Ultraproducts, categorically

Tom Leinster
(Edinburgh)
Abstract

It has long been a challenge to synthesize the complementary insights offered by model theory and category theory. A small fragment of that challenge is to understand ultraproducts categorically. I will show that, granted some general categorical machinery, the notions of ultrafilter and ultraproduct follow inexorably from the notion of finiteness of a set. The machine in question, known as the codensity monad, has existed in an underexploited state for nearly fifty years. To emphasize that it was not constructed specifically for this purpose, I will mention some of its other applications. This talk represents joint work with an anonymous referee. Little knowledge of category theory will be assumed.

Thu, 09 May 2013

16:00 - 17:00
L3

Arithmetic restriction theory and Waring's problem

Kevin Hughes
(Edinburgh)
Abstract

We will discuss arithmetic restriction phenomena and its relation to Waring's problem, focusing on how recent work of Wooley implies certain restriction bounds.

Tue, 05 Mar 2013
17:00
L2

"Galois problems in Schubert Calculus, and related problems"

Prof Iain Gordon
(Edinburgh)
Abstract

I will discuss some recent developments in Schubert calculus and a potential relation to classical combinatorics for symmetric groups and possible extensions to complex reflection groups.

Tue, 23 Oct 2012

15:45 - 16:45
SR1

Birational geometry of moduli of sheaves on K3's via Bridgeland stability

Arend Bayer
(Edinburgh)
Abstract

I will explain recent results with Emanuele Macrì, in which we systematically study the birational geometry of moduli of sheaves on K3's via wall-crossing for

Bridgeland stability conditions. In particular, we obtain descriptions of their nef cones via the Mukai lattice of the K3, their moveable cones, their divisorial contractions, and obtain counter-examples to various conjectures in the literature. We also give a proof of the Lagrangian fibration conjecture (due to

Hassett-Tschinkel/Huybrechts/Sawon) via wall-crossing.

Tue, 12 Oct 2010

14:30 - 15:30
L3

A couple of easy cases for counting Euler tours

Mary Cryan
(Edinburgh)
Abstract

The problem of checking existence for an Euler tour of a graph is trivial (are all vertex degrees even?). The problem of counting (or even approximate counting) Euler tours seems to be very difficult. I will describe two simple classes of graphs where the problem can be

solved exactly in polynomial time. And also talk about the many many classes of graphs where no positive results are known.

Mon, 23 Nov 2009
14:15
L3

Monopoles, Periods and Problems

Harry Braden
(Edinburgh)
Abstract

The modern approach to integrability proceeds via a Riemann surface, the spectral curve.

In many applications this curve is specified by transcendental constraints in terms of periods. I will highlight some of the problems this leads to in the context of monopoles, problems including integer solutions to systems of quadratic forms, questions of real algebraic geometry and conjectures for elliptic functions. Several new results will be presented including the uniqueness of the tetrahedrally symmetric monopole.

Tue, 16 Jun 2009

14:30 - 15:30
L3

A better algorithm for random k-SAT

Amin Coja-Oghlan
(Edinburgh)
Abstract
Let $F$ be a uniformly distributed random $k$-SAT formula with $n$ variables and $m$ clauses. We present a polynomial time algorithm that finds a satisfying assignment of $F$ with high probability for constraint densities $m/n
Tue, 05 May 2009
12:00
L3

Hidden symmetries and decay for the wave equation outside a Kerr black hole

Pieter Blue
(Edinburgh)
Abstract
The Kerr solutions to Einstein's equations describe rotating black holes. For the wave equation in flat-space and outside the non-rotating, Schwarzschild black holes, one method for proving decay is the vector-field method, which uses the energy-momentum tensor and vector-fields. Outside the Schwarzschild black hole, a key intermediate step in proving decay involved proving a Morawetz estimate using a vector-field which pointed away from the photon sphere, where null geodesics orbit the black hole. Outside the Kerr black hole, the photon orbits have a more complicated structure. By using the hidden symmetry of Kerr, we can replace the Morawetz vector-field by a fifth-order operator which, in an appropriate sense, points away from the photon orbits. This allows us to prove the necessary Morawetz estimate. From this we can prove a decay estimate of almost $t^{-1}$ for fixed $r$ and the corresponding decay rates at the event horizon and null infinity. The major innovation in this result is that, by using the hidden symmetries with the energy-momentum, we can avoid taking Fourier tranforms in time.

This is joint work with Lars Andersson.



Mon, 19 Jan 2009
14:15
Oxford-Man Institute

Existence of unique solutions for SDEs for individual driving paths.

Professor Sandy Davie
(Edinburgh)
Abstract
Existence and uniqueness theorems for (vector) stochastic differential equations dx=a(t,x)dt+b(t,x)dW are usually formulated at the level of stochastic processes. If one asks for such a result for an individual driving Brownian path W then there is a difficulty of interpretation.

One solution to this is to use rough path theory, and in this context a uniqueness theorem can be proved (for a.e. W) for dx=b(x)dW if b has Holder continuous derivative. Another variant with a natural interpretation is dx=a(t,x)dt+dW where, if a is bounded Borel, uniqueness can be shown for a.e. W. The talk will explore the extent to which these two approaches can be combined.

Subscribe to Edinburgh