Tue, 09 Jun 2020
15:00
Virtual

First-order phase transitions and efficient sampling algorithms

Will Perkins
(Illinois)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What is the connection between phase transitions in statistical physics and the computational tractability of approximate counting and sampling? There are many fascinating answers to this question but many mysteries remain. I will discuss one particular type of a phase transition: the first-order phase in the Potts model on $\mathbb{Z}^d$ for large $q$, and show how tools used to analyze the phase transition can be turned into efficient algorithms at the critical temperature. In the other direction, I'll discuss how the algorithmic perspective can help us understand phase transitions.

Mon, 08 Jun 2015
14:15
L4

Counting non-simple closed curves on surfaces

Jenya Sapir
(Illinois)
Abstract

We show how to get coarse bounds on the number of (non-simple) closed geodesics on a surface, given upper bounds on both length and self-intersection number. Recent work by Mirzakhani and by Rivin has produced asymptotics for the growth of the number of simple closed curves and curves with one self-intersection (respectively) with respect to length. However, no asymptotics, or even bounds, were previously known for other bounds on self-intersection number. Time permitting, we will discuss some applications of this result

Tue, 28 May 2013

15:45 - 16:45
L3

Hamiltonian reduction and t-structures in (quantum) symplectic geometry

Tom Nevins
(Illinois)
Abstract

Many interesting examples of singular symplectic algebraic varieties and their symplectic resolutions are built by Hamiltonian reduction. There is a corresponding construction of "quantum Hamiltonian reduction" which is of substantial interest to representation theorists. It starts from a twisted-equivariant D-module, an analogue of an algebraic vector bundle (or coherent sheaf) on a moment map fiber, and produces an object on the quantum analogue of the symplectic resolution. In order to understand how far apart the quantisation of the singular symplectic variety and its symplectic resolution can be, one wants to know "what gets killed by quantum Hamiltonian reduction?" I will give a precise answer to this question in terms of effective combinatorics. The answer has consequences for exactness of direct images, and thus for t-structures, which I will also explain. The beautiful geometry behind the combinatorics is that of a stratification of a GIT-unstable locus called the "Kirwan-Ness stratification." The lecture will not assume familiarity with D-modules, nor with any previous talks by the speaker or McGerty in this series. The new results are joint work with McGerty.

Tue, 28 May 2013

15:45 - 16:45
L3

Hamiltonian reduction and t-structures in (quantum) symplectic geometry

Tom Nevins
(Illinois)
Abstract

Many interesting examples of singular symplectic algebraic varieties and their symplectic resolutions are built by Hamiltonian reduction. There is a corresponding construction of "quantum Hamiltonian reduction" which is of substantial interest to representation theorists. It starts from a twisted-equivariant D-module, an analogue of an algebraic vector bundle (or coherent sheaf) on a moment map fiber, and produces an object on the quantum analogue of the symplectic resolution. In order to understand how far apart the quantisation of the singular symplectic variety and its symplectic resolution can be, one wants to know "what gets killed by quantum Hamiltonian reduction?" I will give a precise answer to this question in terms of effective combinatorics. The answer has consequences for exactness of direct images, and thus for t-structures, which I will also explain. The beautiful geometry behind the combinatorics is that of a stratification of a GIT-unstable locus called the "Kirwan-Ness stratification." The lecture will not assume familiarity with D-modules, nor with any previous talks by the speaker or McGerty in this series. The new results are joint work with McGerty.

Subscribe to Illinois