Tue, 29 Nov 2011
13:15
DH 3rd floor SR

Turbidity current dynamics - modelling sediment avalanches in the ocean

Gemma Fay
(Oxford Centre for Industrial and Applied Mathematics)
Abstract

Turbidity currents are fast-moving streams of sediment in the ocean 
which have the power to erode the sea floor and damage man-made
infrastructure anchored to the bed. They can travel for hundreds of
kilometres from the continental shelf to the deep ocean, but they are
unpredictable and can occur randomly without much warning making them
hard to observe and measure. Our main aim is to determine the distance
downstream at which the current will become extinct. We consider the
fluid model of Parker et al. [1986] and derive a simple shallow-water
description of the current which we examine numerically and analytically
to identify supercritical and subcritical flow regimes. We then focus on
the solution of the complete model and provide a new description of the
turbulent kinetic energy. This extension of the model involves switching
from a turbulent to laminar flow regime and provides an improved
description of the extinction process. 

Fri, 18 Nov 2011
15:30
DH 1st floor SR

Does Mr. Darcy hold the key to your (new) heart? Porous tissue growth in a rotating nutrient-filled bioreactor.

Mohit Dalwadi
(Oxford Centre for Industrial and Applied Mathematics)
Abstract

 A common way to replace body tissue is via donors, but as the world population is ageing at an unprecedented rate there will be an even smaller supply to demand ratio for replacement parts than currently exists. Tissue engineering is a process in which damaged body tissue is repaired or replaced via the engineering of artificial tissues. We consider one type of this; a two-phase flow through a rotating high-aspect ratio vessel (HARV) bioreactor that contains a porous tissue construct. We extend the work of Cummings and Waters [2007], who considered a solid tissue construct, by considering flow through the porous construct described by a rotating form of Darcy's equations. By simplifying the equations and changing to bipolar variables, we can produce analytic results for the fluid flow through the system for a given construct trajectory. It is possible to calculate the trajectory numerically and couple this with the fluid flow to produce a full description of the flow behaviour. Finally, coupling with the numerical result for the tissue trajectory, we can also analytically calculate the particle paths for the flow which will lead to being able to calculate the spatial and temporal nutrient density.

Subscribe to Oxford Centre for Industrial and Applied Mathematics