Tue, 30 Jan 2024

16:00 - 17:00
C2

The infinite Hilbert matrix on spaces of analytic functions

Santeri Miihkinen
(Reading University)
Abstract

The (finite) Hilbert matrix is arguably one of the single most well-known matrices in mathematics. The infinite Hilbert matrix H was introduced by David Hilbert around 120 years ago in connection with his double series theorem. It can be interpreted as a linear operator on spaces of analytic functions by its action on their Taylor coefficients. The boundedness of H on the Hardy spaces Hp for 1 < p < ∞ and Bergman spaces Ap for 2 < p < ∞ was established by Diamantopoulos and Siskakis. The exact value of the operator norm of H acting on the Bergman spaces Ap for 4 ≤ p < ∞ was shown to be π /sin(2π/p) by Dostanic, Jevtic and Vukotic in 2008. The case 2 < p < 4 was an open problem until in 2018 it was shown by Bozin and Karapetrovic that the norm has the same value also on the scale2 < p < 4. In this talk, we introduce some background, review some of the old results, and consider the still partly open problem regarding the value of the norm on weighted Bergman spaces. We also consider a generalised Hilbert matrix operator and its (essential) norm. The talk is partly based on a joint work with Mikael Lindström, David Norrbo, and Niklas Wikman (Åbo Akademi University).
 

Thu, 04 Jun 2020

14:00 - 15:00

Do Galerkin methods converge for the classical 2nd kind boundary integral equations in polyhedra and Lipschitz domains?

Simon Chandler-Wilde
(Reading University)
Abstract

The boundary integral equation method is a popular method for solving elliptic PDEs with constant coefficients, and systems of such PDEs, in bounded and unbounded domains. An attraction of the method is that it reduces solution of the PDE in the domain to solution of a boundary integral equation on the boundary of the domain, reducing the dimensionality of the problem. Second kind integral equations, featuring the double-layer potential operator, have a long history in analysis and numerical analysis. They provided, through C. Neumann, the first existence proof to the Laplace Dirichlet problem in 3D, have been an important analysis tool for PDEs through the 20th century, and are popular computationally because of their excellent conditioning and convergence properties for large classes of domains. A standard numerical method, in particular for boundary integral equations, is the Galerkin method, and the standard convergence analysis starts with a proof that the relevant operator is coercive, or a compact perturbation of a coercive operator, in the relevant function space. A long-standing open problem is whether this property holds for classical second kind boundary integral equations on general non-smooth domains. In this talk we give an overview of the various concepts and methods involved, reformulating the problem as a question about numerical ranges. We solve this open problem through counterexamples, presenting examples of 2D Lipschitz domains and 3D Lipschitz polyhedra for which coercivity does not hold. This is joint work with Prof Euan Spence, Bath.

 

[To be added to our seminars mailing list, or to receive a Zoom invitation for a particular seminar, please contact @email.]

Mon, 17 Oct 2016

14:15 - 15:15
L3

Limiting behaviour of a signature

HORATIO BOEDIHARDJO
(Reading University)
Abstract

Signature of a path provides a top down summary of the path as a driving signal. There have been substantial recent progress in reconstructing paths from its signature, (Lyons-Xu 2016, Geng 2016). In this talk, we focus on obtaining certain quantitative features of paths from their signatures. Hambly-Lyons' showed that the normalized limit of signature gives the length of a C^3 path. The result was recently extended by Lyons-Xu to C^1 paths. The extension of this result to bounded variation paths remains open. We will discuss this open problem.

 

Thu, 09 Jun 2016

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Conditioning of Optimal State Estimation Problems

Prof. Nancy Nichols
(Reading University)
Abstract

To predict the behaviour of a dynamical system using a mathematical model, an accurate estimate of the current state of the system is needed in order to initialize the model. Complete information on the current state is, however, seldom available. The aim of optimal state estimation, known in the geophysical sciences as ‘data assimilation’, is to determine a best estimate of the current state using measured observations of the real system over time, together with the model equations. The problem is commonly formulated in variational terms as a very large nonlinear least-squares optimization problem. The lack of complete data, coupled with errors in the observations and in the model, leads to a highly ill-conditioned inverse problem that is difficult to solve.

To understand the nature of the inverse problem, we examine how different components of the assimilation system influence the conditioning of the optimization problem. First we consider the case where the dynamical equations are assumed to model the real system exactly. We show, against intuition, that with increasingly dense and precise observations, the problem becomes harder to solve accurately. We then extend these results to a 'weak-constraint' form of the problem, where the model equations are assumed not to be exact, but to contain random errors. Two different, but mathematically equivalent, forms of the problem are derived. We investigate the conditioning of these two forms and find, surprisingly, that these have quite different behaviour.

Thu, 26 Feb 2015

14:00 - 15:00
L5

Quasi-optimal stability estimates for the hp-Raviart-Thomas projection operator on the cube

Dr Alexey Chernov
(Reading University)
Abstract

Stability of the hp-Raviart-Thomas projection operator as a mapping H^1(K) -> H^1(K) on the unit cube K in R^3 has been addressed e.g. in [2], see also [1]. These results are suboptimal with respect to the polynomial degree. In this talk we present quasi-optimal stability estimates for the hp-Raviart-Thomas projection operator on the cube. The analysis involves elements of the polynomial approximation theory on an interval and the real method of Banach space interpolation.

(Joint work with Herbert Egger, TU Darmstadt)

[1] Mark Ainsworth and Katia Pinchedez. hp-approximation theory for BDFM and RT finite elements on quadrilaterals. SIAM J. Numer. Anal., 40(6):2047–2068 (electronic) (2003), 2002.

[2] Dominik Schötzau, Christoph Schwab, and Andrea Toselli. Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal., 40(6):2171–2194 (electronic) (2003), 2002.

Thu, 15 May 2014
14:00
L5

Plane Wave Discontinuous Galerkin Methods: Exponential Convergence of the hp-version

Andrea Moiola
(Reading University)
Abstract

Computer simulation of the propagation and interaction of linear waves
is a core task in computational science and engineering.
The finite element method represents one of the most common
discretisation techniques for Helmholtz and Maxwell's equations, which
model time-harmonic acoustic and electromagnetic wave scattering.
At medium and high frequencies, resolution requirements and the
so-called pollution effect entail an excessive computational effort
and prevent standard finite element schemes from an effective use.
The wave-based Trefftz methods offer a possible way to deal with this
problem: trial and test functions are special solutions of the
underlying PDE inside each element, thus the information about the
frequency is directly incorporated in the discrete spaces.

This talk is concerned with a family of those methods: the so-called
Trefftz-discontinuous Galerkin (TDG) methods, which include the
well-known ultraweak variational formulation (UWVF).
We derive a general formulation of the TDG method for Helmholtz
impedance boundary value problems and we discuss its well-posedness
and quasi-optimality.
A complete theory for the (a priori) h- and p-convergence for plane
and circular/spherical wave finite element spaces has been developed,
relying on new best approximation estimates for the considered
discrete spaces.
In the two-dimensional case, on meshes with very general element
shapes geometrically graded towards domain corners, we prove
exponential convergence of the discrete solution in terms of number of
unknowns.

This is a joint work with Ralf Hiptmair, Christoph Schwab (ETH Zurich,
Switzerland) and Ilaria Perugia (Vienna, Austria).

Subscribe to Reading University