Tue, 09 Feb 2021
14:00
Virtual

The scaling limit of a critical random directed graph

Robin Stephenson
(Sheffield)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We consider the random directed graph $D(n,p)$ with vertex set $\{1,2,…,n\}$ in which each of the $n(n-1)$ possible directed edges is present independently with probability $p$. We are interested in the strongly connected components of this directed graph. A phase transition for the emergence of a giant strongly connected component is known to occur at $p = 1/n$, with critical window $p = 1/n + \lambda n-4/3$ for $\lambda \in \mathbb{R}$. We show that, within this critical window, the strongly connected components of $D(n,p)$, ranked in decreasing order of size and rescaled by $n-1/3$, converge in distribution to a sequence $(C_1,C_2,\ldots)$ of finite strongly connected directed multigraphs with edge lengths which are either 3-regular or loops. The convergence occurs in the sense of an $L^1$ sequence metric for which two directed multigraphs are close if there are compatible isomorphisms between their vertex and edge sets which roughly preserve the edge lengths. Our proofs rely on a depth-first exploration of the graph which enables us to relate the strongly connected components to a particular spanning forest of the undirected Erdős-Rényi random graph $G(n,p)$, whose scaling limit is well understood. We show that the limiting sequence $(C_1,C_2,\ldots)$ contains only finitely many components which are not loops. If we ignore the edge lengths, any fixed finite sequence of 3-regular strongly connected directed multigraphs occurs with positive probability.

Mon, 15 Jun 2020
14:15
Virtual

Geometry from Donaldson-Thomas invariants

Tom Bridgeland
(Sheffield)
Abstract

I will describe an ongoing research project which aims to encode the DT invariants of a CY3 triangulated category in a geometric structure on its space of stability conditions. More specifically we expect to find a complex hyperkahler structure on the total space of the tangent bundle. These ideas are closely related to the work of Gaiotto, Moore and Neitzke from a decade ago. The main analytic input is a class of Riemann-Hilbert problems involving maps from the complex plane to an algebraic torus with prescribed discontinuities along a collection of rays.

Tue, 11 Jun 2019

12:00 - 13:15
L4

Vacuum polarization on topological black holes

Elizabeth Winstanley
(Sheffield)
Abstract

The renormalized expectation value of the stress energy tensor (RSET) is an object of central importance in quantum field theory in curved space-time, but calculating this on black hole space-times is far from trivial.  The vacuum polarization (VP) of a quantum scalar field is computationally simpler and shares some features with the RSET.  In this talk we consider the properties of the VP for a massless, conformally coupled scalar field on asymptotically anti-de Sitter black holes with spherical, flat and hyperbolic horizons.  We focus on the effect of the different horizon curvature on the VP, and the role played by the boundary conditions far from the black hole.     

 

Tue, 26 Feb 2019

15:30 - 16:30
L4

Field and Vertex algebras from geometry and topology

Sven Meinhardt
(Sheffield)
Abstract

I will explain the notion of a singular ring and sketch how singular rings provide field and vertex algebras introduced by Borcherds and Kac. All of these notions make sense in general symmetric monoidal categories and behave nicely with respect to symmetric lax monoidal functors. I will provide a complete classification of singular rings if the tensor product is a cartesian product. This applies in particular to categories of topological spaces or (algebraic) stacks equipped with the usual cartesian product. Moduli spaces provide a rich source of examples of singular rings. By combining these ideas, we obtain vertex and field algebras for each reasonable moduli space and each choice of an orientable homology theory. This generalizes a recent construction of vertex algebras by Dominic Joyce.

Tue, 28 Nov 2017

15:45 - 16:45
L4

Specialization of (stable) rationality

Evgeny Shinder
(Sheffield)
Abstract

The specialization question for rationality is the following one: assume that very general fibers of a flat proper morphism are rational, does it imply that all fibers are rational? I will talk about recent solution of this question in characteristic zero due to myself and Nicaise, and Kontsevich-Tschinkel. The method relies on a construction of various specialization morphisms for the Grothendieck ring of varieties (stable rationality) and the Burnside ring of varieties (rationality), which in turn rely on the Weak Factorization and Semi-stable Reduction Theorems.

Tue, 14 Nov 2017

15:45 - 16:45
L4

Refined second Stiefel-Whitney classes and their applications in Donaldson-Thomas theory

Sven Meinhardt
(Sheffield)
Abstract

I will introduce a cohomology theory which combines topological and algebraic concepts. Interpretations of certain cohomology groups will be given. We also generalise the construction of the second Stiefel-Whitney class of a line bundle. As I will explain in my talk, the refined Stiefel-Whitney class of the canonical bundle on certain moduli stacks provides an obstruction for the construction of cohomological Hall algebras.

Tue, 31 Jan 2017

15:45 - 16:45
L4

Universal flops and noncommutative algebras

Joe Karmazyn
(Sheffield)
Abstract

A classification of simple flops on smooth threefolds in terms of the length invariant was given by Katz and Morrison, who showed that the length must take the value 1,2,3,4,5, or 6. This classification was produced by understanding simultaneous (partial) resolutions that occur in the deformation theory of A, D, E Kleinian surface singularities. An outcome of this construction is that all simple threefold flops of length l occur by pullback from a "universal flop" of length l. Curto and Morrison understood the universal flops of length 1 and 2 using matrix factorisations. I aim to describe how these universal flops can understood for lengths >2 via noncommutative algebra.

Tue, 08 Mar 2016

15:45 - 16:45
L4

The wall-crossing formula and spaces of quadratic differentials

Tom Bridgeland
(Sheffield)
Abstract

The wall-crossing behaviour of Donaldson-Thomas invariants in CY3 categories is controlled by a beautiful formula involving the group of automorphisms of a symplectic algebraic torus. This formula invites one to solve a certain Riemann-Hilbert problem. I will start by explaining how to solve this problem in the simplest possible case (this is undergraduate stuff!). I will then talk about a more general class of examples of the wall-crossing formula involving moduli spaces of quadratic differentials.

Mon, 03 Jun 2013

15:45 - 16:45
L3

Derived A-infinity algebras from the point of view of operads

Sarah Whitehouse
(Sheffield)
Abstract

A-infinity algebras arise whenever one has a multiplication which is "associative up to homotopy". There is an important theory of minimal models which involves studying differential graded algebras via A-infinity structures on their homology algebras. However, this only works well over a ground field. Recently Sagave introduced the more general notion of a derived A-infinity algebra in order to extend the theory of minimal models to a general commutative ground ring.

Operads provide a very nice way of saying what A-infinity algebras are - they are described by a kind of free resolution of a strictly associative structure. I will explain the analogous result for derived A_infinity algebras - these are obtained in the same manner from a strictly associative structure with an extra differential.

This is joint work with Muriel Livernet and Constanze Roitzheim.

Subscribe to Sheffield