Mon, 08 May 2017
12:45
L3

Gauged Linear Sigma Model, Calabi-Yaus and Hemisphere Partition Function

Johanna Knapp
(Technical University of Vienna)
Abstract

The gauged linear sigma model (GLSM) is a supersymmetric gauge theory in two dimensions which captures information about Calabi-Yaus and their moduli spaces. Recent result in supersymmetric localization provide new tools for computing quantum corrections in string compactifications. This talk will focus on the hemisphere partition function in the GLSM which computes the quantum corrected central charge of B-type D-branes. Several concrete examples of GLSMs and the application of the hemisphere partition function in the context of transporting D-branes in the Kahler moduli space will be given.

 
Tue, 08 Mar 2016
14:30
L6

Parking in Trees and Mappings - Enumerative Results and a Phase Change Behaviour

Marie-Louise Lackner
(Technical University of Vienna)
Abstract
Parking functions were originally introduced in the context of a hashing procedure and have since then been studied intensively in combinatorics. We apply the concept of parking functions to rooted labelled trees and functional digraphs of mappings (i.e., functions $f : [n] \to [n]$). The nodes are considered as parking spaces and the directed edges as one-way streets: Each driver has a preferred parking space and starting with this node he follows the edges in the graph until he either finds a free parking space or all reachable parking spaces are occupied. If all drivers are successful we speak about a parking function for the tree or mapping. Via analytic combinatorics techniques we study the total number $F_{n,m}$ and $M_{n,m}$ of tree and mapping parking functions, respectively, i.e. the number of pairs $(T,s)$ (or $(f,s)$), with $T$ a size-$n$ tree (or $f : [n] \to [n]$ an $n$-mapping) and $s \in [n]^{m}$ a parking function for $T$ (or for $f$) with $m$ drivers, yielding exact and asymptotic results. We describe the phase change behaviour appearing at $m=\frac{n}{2}$ for $F_{n,m}$ and $M_{n,m}$, respectively, and relate it to previously studied combinatorial contexts. Moreover, we present a bijective proof of the occurring relation $n F_{n,m} = M_{n,m}$.
Mon, 22 Oct 2007

12:00 - 13:00
L3

Exploring the Calabi-Yau Landscape Along Toric Roads

Maximilian Kreutzer
(Technical University of Vienna)
Abstract
Abstract: Toric geometry provides powerful and efficient combinatorial tools for the construction and analysis of Calabi-Yau manifolds. After recollections of the hypersurface case I present recent results on new Calabi-Yau 3-folds and their mirrors via conifold transitions, ideas for generalizations to higher codimensions and applications to string theory.
Subscribe to Technical University of Vienna