Thu, 23 Feb 2023

14:00 - 15:00
L1

Flows around some soft corals

Laura Miller
(University of Arizona)
Further Information

 

Please note the change of time for this seminar at 2pm GMT.

Laura Miller is Professor of Mathematics. Her research group, 'investigate[s] changes in the fluid dynamic environment of organisms as they grow or shrink in size over evolutionary or developmental time.' (Taken from her group website here: https://sites.google.com/site/swimflypump/home?authuser=0) 

Abstract

In this presentation, I will discuss the construction and results of numerical simulations quantifying flows around several species of soft corals. In the first project, the flows near the tentacles of xeniid soft corals are quantified for the first time. Their active pulsations are thought to enhance their symbionts' photosynthetic rates by up to an order of magnitude. These polyps are approximately 1 cm in diameter and pulse at frequencies between approximately 0.5 and 1 Hz. As a result, the frequency-based Reynolds number calculated using the tentacle length and pulse frequency is on the order of 10 and rapidly decays as with distance from the polyp. This introduces the question of how these corals minimize the reversibility of the flow and bring in new volumes of fluid during each pulse. We estimate the Péclet number of the bulk flow generated by the coral as being on the order of 100–1000 whereas the flow between the bristles of the tentacles is on the order of 10. This illustrates the importance of advective transport in removing oxygen waste. In the second project, the flows through the elaborate branching structures of gorgonian colonies are considered.  As water moves through the elaborate branches, it is slowed, and recirculation zones can form downstream of the colony. At the smaller scale, individual polyps that emerge from the branches expand their tentacles, further slowing the flow. At the smallest scale, the tentacles are covered in tiny pinnules where exchange occurs. We quantified the gap to diameter ratios for various gorgonians at the scale of the branches, the polyp tentacles and the pinnules. We then used computational fluid dynamics to determine the flow patterns at all three levels of branching. We quantified the leakiness between the branches, tentacles and pinnules over the biologically relevant range of Reynolds numbers and gap-to-diameter ratios, and found that the branches and tentacles can act as either leaky rakes or solid plates depending upon these dimensionless parameters. The pinnules, in contrast, mostly impede the flow. Using an agent-based modeling framework, we quantified plankton capture as a function of the gap-to diameter ratio of the branches and the Reynolds number. We found that the capture rate depends critically on both morphology and Reynolds number. 

Thu, 05 Dec 2013

16:00 - 17:00
L2

Random matrices and the asymptotic behavior of the zeros of the Taylor approximants of the exponential function

Ken McLaughlin
(University of Arizona)
Abstract

The plan: start with an introduction to several random matrix ensembles and discuss asymptotic properties of the eigenvalues of the matrices, the last one being the so-called "Normal Matrix Model", and the connection described in the title will be explained. If all goes well I will end with an explanation of asymptotic computations for a new normal matrix model example, which demonstrates a form of universality.

(NOTE CHANGE OF VENUE TO L2)

Thu, 01 Dec 2011

14:00 - 15:00
Gibson Grd floor SR

Climate, Assimilation of Data and Models - When Data Fail Us

Prof Juan Restrepo
(University of Arizona)
Abstract

The fundamental task in climate variability research is to eke

out structure from climate signals. Ideally we want a causal

connection between a physical process and the structure of the

signal. Sometimes we have to settle for a correlation between

these. The challenge is that the data is often poorly

constrained and/or sparse. Even though many data gathering

campaigns are taking place or are being planned, the very high

dimensional state space of the system makes the prospects of

climate variability analysis from data alone impractical.

Progress in the analysis is possible by the use of models and

data. Data assimilation is one such strategy. In this talk we

will describe the methodology, illustrate some of its

challenges, and highlight some of the ways our group has

proposed to improving the methodology.

Subscribe to University of Arizona