Thu, 15 Nov 2018

17:15 - 18:15
L1

Michael Berry - Chasing the dragon: tidal bores in the UK and elsewhere

Michael Berry
(University of Bristol)
Abstract

Oxford Mathematics Public Lectures
Hooke Lecture

Michael Berry - Chasing the dragon: tidal bores in the UK and elsewhere
15 November 2018 - 5.15pm

In some of the world’s rivers, an incoming high tide can arrive as a smooth jump decorated by undulations, or as a breaking wave. The river reverses direction and flows upstream.

Understanding tidal bores involves

· analogies with tsunamis, rainbows, horizons in relativity, and ideas from  quantum physics;

· the concept of a ‘minimal model’ in mathematical explanation;

· different ways in which different cultures describe the same thing;

· the first unification in fundamental physics.

Michael Berry is Emeritus Professor of Physics, H H Wills Physics Laboratory, University of Bristol

5.15pm, Mathematical Institute, Oxford

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics
https://livestream.com/oxuni/Berry

Oxford Mathematics Public Lectures are generously supported by XTX Markets.

 

 

 

Tue, 14 Nov 2017
14:30
L6

Isoperimetry In Integer Lattices

Ben Barber
(University of Bristol)
Abstract

The edge isoperimetric problem for a graph G is to find, for each n, the minimum number of edges leaving any set of n vertices.  Exact solutions are known only in very special cases, for example when G is the usual cubic lattice on Z^d, with edges between pairs of vertices at l_1 distance 1.  The most attractive open problem was to answer this question for the "strong lattice" on Z^d, with edges between pairs of vertices at l_infty distance 1.  Whilst studying this question we in fact solved the edge isoperimetric problem asymptotically for every Cayley graph on Z^d.  I'll talk about how to go from the specification of a lattice to a corresponding near-optimal shape, for both this and the related vertex isoperimetric problem, and sketch the key ideas of the proof. Joint work with Joshua Erde.

Thu, 30 Nov 2017

12:00 - 13:00
L4

McKean–Vlasov problems with contagion effects

Sean Ledger
(University of Bristol)
Abstract

I will introduce a McKean—Vlasov problem arising from a simple mean-field model of interacting neurons. The equation is nonlinear and captures the positive feedback effect of neurons spiking. This leads to a phase transition in the regularity of the solution: if the interaction is too strong, then the system exhibits blow-up. We will cover the mathematical challenges in defining, constructing and proving uniqueness of solutions, as well as explaining the connection to PDEs, integral equations and mathematical finance.

Thu, 19 Oct 2017
16:00
L6

Smooth values of polynomials

Trevor Wooley
(University of Bristol)
Abstract

Recall that an integer n is called y-smooth when each of its prime divisors is less than or equal to y. It is conjectured that, for any a>0,  any polynomial of positive degree having integral coefficients should possess infinitely many values at integral arguments n that are n^a-smooth. One could consider this problem to be morally “dual” to the cognate problem of establishing that irreducible polynomials assume prime values infinitely often, unless local conditions preclude this possibility. This smooth values conjecture is known to be true in several different ways for linear polynomials, but in general remains unproven for any degree exceeding 1. We will describe some limited progress in the direction of the conjecture, highlighting along the way analogous conclusions for polynomial smoothness. Despite being motivated by a problem in analytic number theory, most of the methods make use of little more than pre-Galois theory. A guest appearance will be made by several hyperelliptic curves. [This talk is based on work joint with Jonathan Bober, Dan Fretwell and Greg Martin].

Wed, 07 Mar 2018
14:00
L5

Catch me if you can: locating (and fixing) side channel leaks

Elisabeth Oswald
(University of Bristol)
Abstract

Side channel leakage is no longer just a concern for industries that
traditionally have a high degree of awareness and expertise in
(implementing) cryptography. With the rapid growth of security
sensitive applications in other areas, e.g. smartphones, homes, etc.
there is a clear need for developers with little to no crypto
expertise to implement and instantiate cryptography securely on
embedded devices. In this talk, I explain what makes finding side
channel leaks challenging (in theory and in practice) and give an
update on our latest work to develop methods and tools to enable
non-domain experts to ‘get a grip’ on leakage in their
implementations.

Mon, 16 Jan 2017

16:00 - 17:00
L4

A survey of discrete analogues in harmonic analysis

Kevin Hughes
(University of Bristol)
Abstract

In this talk we will motivate and discuss several problems and results in harmonic analysis that involve some arithmetic or discrete structure. We will focus on pioneering work of Bourgain on discrete restriction theorems and pointwise ergodic theorems for arithmetic sets, their modern developments and future directions for the field.

Wed, 30 Nov 2016
15:00
L5

On Ring Learning with Errors and its uses in cryptography

Ana Costache
(University of Bristol)
Abstract

We introduce Learning with Errors and Ring Learning with Errors, two hard
lattice problems which are widely used for security of Homomorphic
Encryption schemes. Following a study we conducted comparing four such
schemes, the best scheme was the so-called BGV scheme, introduced by
Brakerski-Gentry-Vaikuntanathan in 2012. We present it as an example of a
ring-based homomorphic scheme, discussing its number theoretic
optimisations.

Tue, 25 Oct 2016
14:30
L6

New bounds for Roth's theorem on arithmetic progressions

Thomas Bloom
(University of Bristol)
Abstract

In joint work with Olof Sisask, we establish new quantitative bounds for Roth's theorem on arithmetic progressions, showing that a set of integers with no three-term arithmetic progressions must have density O(1/(log N)^{1+c}) for some absolute constant c>0. This is the integer analogue of a result of Bateman and Katz for the model setting of vector spaces over a finite field, and the proof follows a similar structure. 

Thu, 10 Nov 2016
16:00
L6

Effective equidistribution of rational points on expanding horospheres

Min Lee
(University of Bristol)
Abstract

The equidistribution theorem for rational points on expanding horospheres with fixed denominator in the space of d-dimensional Euclidean lattices has been derived in the work by M. Einsiedler, S. Mozes, N. Shah and U. Shapira. The proof of their theorem requires ergodic theoretic tools, including Ratner's measure classification theorem. In this talk I will present an alternative approach, based on harmonic analysis and Weil's bound for Kloosterman sums. In the case of d=3, unlike the ergodic-theoretic approach, this provides an explicit estimate on the rate of convergence. This is a joint work with Jens Marklof. 

Subscribe to University of Bristol