Thu, 27 Feb 2014

12:00 - 13:00
L6

The rigidity problem for symmetrization inequalities

Dr. Filippo Cagnetti
(University of Sussex)
Abstract

Steiner symmetrization is a very useful tool in the study of isoperimetric inequality. This is also due to the fact that the perimeter of a set is less or equal than the perimeter of its Steiner symmetral. In the same way, in the Gaussian setting,

it is well known that Ehrhard symmetrization does not increase the Gaussian perimeter. We will show characterization results for equality cases in both Steiner and Ehrhard perimeter inequalities. We will also characterize rigidity of equality cases. By rigidity, we mean the situation when all equality cases are trivially obtained by a translation of the Steiner symmetral (or, in the Gaussian setting, by a reflection of the Ehrhard symmetral). We will achieve this through the introduction of a suitable measure-theoretic notion of connectedness, and through a fine analysis of the barycenter function

for a special class of sets. These results are obtained in collaboration with Maria Colombo, Guido De Philippis, and Francesco Maggi.

Thu, 16 Jan 2014

16:00 - 17:30
L3

Topology of Sobolev spaces and Local minimizers

Ali Taheri
(University of Sussex)
Abstract

Attempting to extend the methods of critical point theory (e.g., those of Morse theory and Lusternik-Schnirelman theory) to the study of strong local minimizers of integral functionals of the calculus of variations I will describe how the obstruction method of algebraic topology can be successfully used to tackle the enumeration problem for various homotopy classes of maps in Sobolev spaces and that how this will result in precise lower bounds on the number of such local minimizers in terms of convenient topological invariants of the underlying spaces. I will then move on to dicussing variants as well as applications of the result to some classes of geometric nonlinear PDEs in particular problems in nonlinear elasticity.

Mon, 18 Nov 2013

17:00 - 18:00
L6

Blow-up of arbitrarily rough critical Besov norms at any Navier-Stokes singularity

Gabriel Koch
(University of Sussex)
Abstract

We show that the spatial norm in any critical homogeneous Besov

space in which local existence of strong solutions to the 3-d

Navier-Stokes equations is known must become unbounded near a singularity.

In particular, the regularity of these spaces can be arbitrarily close to

-1, which is the lowest regularity of any Navier-Stokes critical space.

This extends a well-known result of Escauriaza-Seregin-Sverak (2003)

concerning the Lebesgue space $L^3$, a critical space with regularity 0

which is continuously embedded into the spaces we consider. We follow the

``critical element'' reductio ad absurdum method of Kenig-Merle based on

profile decompositions, but due to the low regularity of the spaces

considered we rely on an iterative algorithm to improve low-regularity

bounds on solutions to bounds on a part of the solution in spaces with

positive regularity. This is joint work with I. Gallagher (Paris 7) and

F. Planchon (Nice).

Thu, 01 Nov 2012

12:30 - 13:30
Gibson 1st Floor SR

Analytical and numerical aspects of an extended Navier-Stokes system

Arghir D. Zarnescu
(University of Sussex)
Abstract

H. Johnston and J.G. Liu proposed in 2004 a numerical scheme for approximating numerically solutions of the incompressible Navier-Stokes system. The scheme worked very well in practice but its analytic properties remained elusive.\newline

In order to understand these analytical aspects they considered together with R. Pego a continuous version of it that appears as an extension of the incompressible Navier-Stokes to vector-fields that are not necessarily divergence-free. For divergence-free initial data one has precisely the incompressible Navier-Stokes, while for non-divergence free initial data, the divergence is damped exponentially.\newline

We present analytical results concerning this extended system and discuss numerical implications. This is joint work with R. Pego, G. Iyer (Carnegie Mellon) and J. Kelliher, M. Ignatova (UC Riverside).

Thu, 11 Oct 2007

14:00 - 15:00
Comlab

Explicit A Posteriori Error Analysis for Evolution Equation's Finite Element Approximation

Dr Omar Lakkis
(University of Sussex)
Abstract

I will address the usage of the elliptic reconstruction technique (ERT) in a posteriori error analysis for fully discrete schemes for parabolic partial differential equations. A posteriori error estimates are effective tools in error control and adaptivity and a mathematical rigorous derivation justifies and improves their use in practical implementations.

The flexibility of the ERT allows a virtually indiscriminate use of various parabolic PDE techniques such as energy methods, duality methods and heat-kernel estimates, as opposed to direct approaches which leave less maneuver room. Thanks to ERT parabolic stability techniques can be combined with different elliptic a posteriori error analysis techniques, such as residual or recovery estimators, to derive a posteriori error bounds. The method has the merit of unifying previously known approaches, as well as providing new ones and providing us with novel error bounds (e.g., pointwise norm error bounds for the heat equation). [These results are based on joint work with Ch. Makridakis and A. Demlow.]

Another feature, which I would like to highlight, of the ERT is its simplifying power. It allows us to derive estimates where the analysis would be very complicated otherwise. As an example, I will illustrate its use in the context of non-conforming methods, with a special eye on discontinuous Galerkin methods. [These are recent results obtained jointly with E. Georgoulis.]

Thu, 16 Feb 2006

14:00 - 15:00
Comlab

The finite element method for Cahn-Hilliard-Navier-Stokes equations

Dr David Kay
(University of Sussex)
Abstract

The Cahn-Hilliard equations provides a model of phase transitions when two or more immiscible fluids interact. When coupled with the Navier-Stokes equations we obtain a model fro the dynamics of multiphase flow. This model takes into account the viscosity and densities of the various fluids present.

A finite element discretisation of the variable density Cahn-Hilliard-Navier-Stokes equations is presented. An analysis of the discretisation and a reliable efficient numerical solution method are presented.

Thu, 25 Nov 2010

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Primal-dual active set methods for solving Non-local Allen-Cahn Systems

Dr. Vanessa Styles
(University of Sussex)
Abstract

We propose and analyze a primal-dual active set method for local and non-local vector-valued Allen-Cahn variational inequalities.

We show existence and uniqueness of a solution for the non-local vector-valued Allen-Cahn variational inequality in a formulation involving Lagrange multipliers for local and non-local constraints. Furthermore, convergence of the algorithm is shown by interpreting the approach as a semi-smooth Newton method and numerical simulations are presented.

Thu, 04 Feb 2010

14:00 - 15:00
3WS SR

Determination of the Basin of Attraction in Dynamical Systems using Meshless Collocation

Dr Peter Giesl
(University of Sussex)
Abstract

In dynamical systems given by an ODE, one is interested in the basin

of attraction of invariant sets, such as equilibria or periodic

orbits. The basin of attraction consists of solutions which converge

towards the invariant set. To determine the basin of attraction, one

can use a solution of a certain linear PDE which can be approximated

by meshless collocation.

The basin of attraction of an equilibrium can be determined through

sublevel sets of a Lyapunov function, i.e. a scalar-valued function

which is decreasing along solutions of the dynamical system. One

method to construct such a Lyapunov function is to solve a certain

linear PDE approximately using Meshless Collocation. Error estimates

ensure that the approximation is a Lyapunov function.

The basin of attraction of a periodic orbit can be analysed by Borg’s

criterion measuring the time evolution of the distance between

adjacent trajectories with respect to a certain Riemannian metric.

The sufficiency and necessity of this criterion will be discussed,

and methods how to compute a suitable Riemannian metric using

Meshless Collocation will be presented in this talk.

Subscribe to University of Sussex