Thu, 16 May 2024

14:00 - 15:00
Lecture Room 3

Multilevel Monte Carlo methods for the approximation of failure probability regions

Matteo Croci
(Basque Center for Applied Mathematics)
Abstract

In this talk, we consider the problem of approximating failure regions. More specifically, given a costly computational model with random parameters and a failure condition, our objective is to determine the parameter region in which the failure condition is likely to not be satisfied. In mathematical terms, this problem can be cast as approximating the level set of a probability density function. We solve this problem by dividing it into two: 1) The design of an efficient Monte Carlo strategy for probability estimation. 2) The construction of an efficient algorithm for level-set approximation. Following this structure, this talk is comprised of two parts:

In the first part, we present a new multi-output multilevel best linear unbiased estimator (MLBLUE) for approximating expectations. The advantage of this estimator is in its convenience and optimality: Given any set of computational models with known covariance structure, MLBLUE automatically constructs a provenly optimal estimator for any (finite) number of quantities of interest. Nevertheless, the optimality of MLBLUE is tied to its optimal set-up, which requires the solution of a nonlinear optimization problem. We show how the latter can be reformulated as a semi-definite program and thus be solved reliably and efficiently.

In the second part, we construct an adaptive level-set approximation algorithm for smooth functions corrupted by noise in $\mathbb{R}^d$. This algorithm only requires point value data and is thus compatible with Monte Carlo estimators. The algorithm is comprised of a criterion for level-set adaptivity combined with an a posteriori error estimator. Under suitable assumptions, we can prove that our algorithm will correctly capture the target level set at the same cost complexity of uniformly approximating a $(d-1)$-dimensional function.

Mon, 26 Feb 2018

16:00 - 17:00
L4

The Vortex Filament Equation: the Talbot effect and the transfer of energy and momentum

Luis Vega
(Basque Center for Applied Mathematics)
Abstract

I will present some recent results obtained in collaboration with V. Banica and F. de la Hoz on the evolution of vortex filaments according to the so called Localized Induction Approximation  (LIA). This approximation is given by a non-linear geometric partial differential equation, that is known under the name of the Vortex Filament Equation (VFE). The aim of the talk is threefold. First, I will recall the Talbot effect of linear optics.  Secondly, I will give some explicit solutions of VFE where this Talbot effect is also present. Finally, I will consider some questions concerning the transfer of energy and momentum for these explicit solutions.

Thu, 27 Oct 2016
12:00
L5

The inverse Calderón problem with Lipschitz conductivities

Pedro Caro
(Basque Center for Applied Mathematics)
Abstract
In this talk I will present a recent uniqueness result for an inverse boundary value problem consisting of recovering the conductivity of a medium from boundary measurements. This inverse problem was proposed by Calderón in 1980 and is the mathematical model for a medical imaging technique called Electrical Impedance Tomography which has promising applications in monitoring lung functions and as an alternative/complementary technique to mammography and Magnetic Resonance Imaging for breast cancer detection. Since in real applications, the medium to be imaged may present quite rough electrical properties, it seems of capital relevance to know what are the minimal regularity assumptions on the conductivity to ensure the unique determination of the conductivity from the boundary measurements. This question is challenging and has been brought to the attention of many analysts. The result I will present provides uniqueness for Lipschitz conductivities and was proved in collaboration with Keith Rogers.
Mon, 31 Oct 2016

16:30 - 17:30
L4

High Ericksen number and the dynamical creation of defects in nematics

Arghir Zarnescu
(Basque Center for Applied Mathematics)
Abstract


We consider the Beris-Edwards model of liquid crystal dynamics. We study a non-dimensionalisation and regime suited for the study of defect patterns, that amounts to a combined high Ericksen and high Reynolds  number regime. 
We identify some of the flow mechanisms responsible for the appearance of localized gradients that increase in time.
This is joint work with Hao Wu (Fudan).
 

Subscribe to Basque Center for Applied Mathematics