Thu, 28 Apr 2022

14:00 - 15:00
L3

An SDP approach for tensor product approximation of linear operators on matrix spaces

Andre Uschmajew
(Max Planck Institute Leipzig)
Abstract

Tensor structured linear operators play an important role in matrix equations and low-rank modelling. Motivated by this we consider the problem of approximating a matrix by a sum of Kronecker products. It is known that an optimal approximation in Frobenius norm can be obtained from the singular value decomposition of a rearranged matrix, but when the goal is to approximate the matrix as a linear map, an operator norm would be a more appropriate error measure. We present an alternating optimization approach for the corresponding approximation problem in spectral norm that is based on semidefinite programming, and report on its practical performance for small examples.
This is joint work with Venkat Chandrasekaran and Mareike Dressler.

Fri, 29 Jan 2021

15:00 - 16:00
Virtual

Seeing Data through the lens of Geometry (Ollivier Ricci Curvature)

Marzieh Eidi
(Max Planck Institute Leipzig)
Abstract

Ollivier Ricci curvature is a notion originated from Riemannian Geometry and suitable for applying on different settings from smooth manifolds to discrete structures such as (directed) hypergraphs. In the past few years, alongside Forman Ricci curvature, this curvature as an edge based measure, has become a popular and powerful tool for network analysis. This notion is defined based on optimal transport problem (Wasserstein distance) between sets of probability measures supported on data points and can nicely detect some important features such as clustering and sparsity in their structures. After introducing this notion for (directed) hypergraphs and mentioning some of its properties, as one of the main recent applications, I will present the result of implementation of this tool for the analysis of chemical reaction networks. 

Mon, 21 May 2018

15:45 - 16:45
L3

Invariants of the signature

JOSCHA DIEHL
(Max Planck Institute Leipzig)
Abstract

Based on classical invariant theory, I describe a complete set of elements of the signature that is invariant to the general linear group, rotations or permutations.

A geometric interpretation of some of these invariants will be given.

Joint work with Jeremy Reizenstein (Warwick).

Tue, 20 Jun 2017

14:00 - 15:00
L5

Numerical Convolution for Tensor Operations

Professor Wolfgang Hackbusch
(Max Planck Institute Leipzig)
Abstract

Starting from an example in quantum chemistry, we explain the techniques of Numerical Tensor Calculus with particular emphasis on the convolution operation. The tensorisation technique also applies to one-dimensional grid functions and allows to perform the convolution with a cost which may be much cheaper than the fast Fourier transform.

Thu, 17 Nov 2016
12:00
L5

Green’s function for elliptic systems: Existence and stochastic bounds

Arianna Giunti
(Max Planck Institute Leipzig)
Abstract
We study the Green function G associated to the operator −∇ · a∇ in Rd, when a = a(x) is a (measurable) bounded and uniformly elliptic coefficient field. An example of De Giorgi implies that, in the case of systems, the existence of a Green’s function is not ensured by such a wide class of coefficient fields a. We give a more general definition of G and show that for every bounded and uniformly elliptic a, such G exists and is unique. In addition, given a stationary ensemble $\langle\cdot\rangle$ on a, we prove optimal decay estimates for $\langle|G|\rangle $ and $\langle|∇G|\rangle$. Under assumptions of quantification of ergodicity for $\langle\cdot\rangle$, we extend these bounds also to higher moments in probability. These results play an important role in the context of quantitative stochastic homogenization for −∇ · a∇. This talk is based on joint works with Peter Bella, Joseph Conlon and Felix Otto.
Subscribe to Max Planck Institute Leipzig