Mon, 24 Apr 2023
15:30
L5

Coarse embeddings, and yet more ways to avoid them

David Hume
(Bristol)
Abstract

Coarse embeddings (maps between metric spaces whose distortion can be controlled by some function) occur naturally in various areas of pure mathematics, most notably in topology and algebra. It may therefore come as a surprise to discover that it is not known whether there is a coarse embedding of three-dimensional real hyperbolic space into the direct product of a real hyperbolic plane and a 3-regular tree. One reason for this is that there are very few invariants which behave monotonically with respect to coarse embeddings, and thus could be used to obstruct coarse embeddings.


 

Tue, 14 Jun 2022

14:00 - 15:00
L6

Invariable generation and totally deranged elements of simple groups

Scott Harper
(Bristol)
Abstract

By a classical theorem of Jordan, every faithful transitive action of a nontrivial finite group admits a derangement (an element with no fixed points). More recently, the existence of derangements with additional properties has attracted much attention, especially for primitive actions of almost simple groups. Surprisingly, there exist almost simple groups with elements that are derangements in every faithful primitive action; we say that these elements are totally deranged. I'll talk about ongoing work to classify the totally deranged elements of almost simple groups, and I'll mention how this solves a question of Garzoni about invariable generating sets for simple groups.

Mon, 07 Feb 2022
12:45
Virtual

TBA

Michael Blake
(Bristol)
Mon, 17 May 2021

16:00 - 17:00
Virtual

Distributions of Character Sums

Ayesha Hussain
(Bristol)
Abstract

Over the past few decades, there has been a lot of interest in partial sums of Dirichlet characters. Montgomery and Vaughan showed that these character sums remain a constant size on average and, as a result, a lot of work has been done on the distribution of the maximum. In this talk, we will investigate the distribution of these character sums themselves, with the main goal being to describe the limiting distribution as the prime modulus approaches infinity. This is motivated by Kowalski and Sawin’s work on Kloosterman paths.
 

Mon, 22 Feb 2021

16:00 - 17:00
Virtual

Wild Galois Representations

Nirvana Coppola
(Bristol)
Abstract

Let C be an elliptic or hyperelliptic curve over a p-adic field K. Then C is equipped with a Galois representation, given by the action of the absolute Galois group of K on the Tate module of C. The behaviour of this representation depends on the reduction type of C. We will focus on the case of C having bad reduction, and acquiring potentially good reduction over a wildly ramified extension of K. We will show that, if C is an elliptic curve, the Galois representation can be completely determined in this case, thus allowing one to fully classify Galois representations attached to elliptic curves. Furthermore, the same can be done for a special family of hyperelliptic curves, obtaining a result which is surprisingly similar to that for the corresponding elliptic curves case.
 

Tue, 24 Nov 2020
14:00
Virtual

Matching Random Points

Alexander Holroyd
(Bristol)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What is fairness, and to what extent is it practically achievable? I'll talk about a simple mathematical model under which one might hope to understand such questions. Red and blue points occur as independent homogeneous Poisson processes of equal intensity in Euclidean space, and we try to match them to each other. We would like to minimize the sum of a some function (say, a power, $\gamma$) of the distances between matched pairs. This does not make sense, because the sum is infinite, so instead we satisfy ourselves with minimizing *locally*. If the points are interpreted as agents who would like to be matched as close as possible, the parameter $\gamma$ encodes a measure of fairness - large $\gamma$ means that we try to avoid occasional very bad outcomes (long edges), even if that means inconvenience to others - small $\gamma$ means everyone is in it for themselves.
    In dimension 1 we have a reasonably complete picture, with a phase transition at $\gamma=1$. For $\gamma<1$ there is a unique minimal matching, while for $\gamma>1$ there are multiple matchings but no stationary solution. In higher dimensions, even existence is not clear in all cases.

Tue, 07 May 2019

15:30 - 16:30
L4

Toric degenerations of Grassmannians

Fatemeh Mohammadi
(Bristol)
Abstract

Many toric degenerations and integrable systems of the Grassmannians Gr(2, n) are described by trees, or equivalently subdivisions of polygons. These degenerations can also be seen to arise from the cones of the tropicalisation of the Grassmannian. In this talk, I focus on particular combinatorial types of cones in tropical Grassmannians Gr(k,n) and prove a necessary condition for such an initial degeneration to be toric. I will present several combinatorial conjectures and computational challenges around this problem.  This is based on joint works with Kristin Shaw and with Oliver Clarke.

Thu, 08 Nov 2018

16:00 - 17:00
L6

Indivisibility and divisibility of class numbers of imaginary quadratic fields

Olivia Beckwith
(Bristol)
Abstract

For any prime p > 3, the strongest lower bounds for the number of imaginary quadratic fields with discriminant down down to -X for which the class group has trivial (non-trivial) p-torsion are due to Kohnen and Ono (Soundararajan). I will discuss recent refinements of these classic results in which we consider the imaginary quadratic fields whose class number is indivisible (divisible) by p such that a given finite set of primes factor in a prescribed way. We prove a lower bound for the number of such fields with discriminant down to -X which is of the same order of magnitude as Kohnen and Ono's (Soundararajan's) results. For the indivisibility case, we rely on a result of Wiles establishing the existence of imaginary quadratic fields with trivial p-torsion in their class groups satisfying almost any given finite set of local conditions, and a result of Zagier which says that the Hurwitz class numbers are the Fourier coefficients of a mock modular form.

Thu, 15 Feb 2018
16:00
L6

Moments of cubic L-functions over function fields

Alexandra Florea
(Bristol)
Abstract

I will talk about some recent work with Chantal David and Matilde Lalin about the mean value of L-functions associated to cubic characters over F_q[t] when q=1 (mod 3). I will explain how to obtain an asymptotic formula with a (maybe a little surprising) main term, which relies on using results from the theory of metaplectic Eisenstein series about cancellation in averages of cubic Gauss sums over functions fields.

Tue, 24 Apr 2018

16:00 - 17:00
L5

Global Reflection Principles

Philip Welch
(Bristol)
Abstract

We reflect on the set-theoretic ineffability of the Cantorian Absolute of all sets. If this is done in the style of Levy and Montague in a first order manner, or Bernays using second or higher order methods this has only resulted in principles that can justify large cardinals that are `intra-constructible', that is they do not contradict the assumption that V, the universe of sets of mathematical discourse, is Gödel's universe of constructible sets, namely L.  Peter Koellner has advanced reasons that this style of reflection will only have this rather limited strength. However set theorists would dearly like to have much stronger axioms of infinity. We propose a widened structural `Global Reflection Principle' that is based on a view of sets and Cantorian absolute infinities that delivers a proper class of Woodin cardinals (and more). A mereological view of classes is used to differentiate between sets and classes. Once allied to a wider view of structural reflection, stronger conclusions are thus possible.
 

Obtaining Woodin's Cardinals

P. D. Welch, in ``Logic in Harvard: Conference celebrating the birthday of Hugh Woodin''
Eds. A. Caicedo, J. Cummings, P.Koellner & P. Larson, AMS Series, Contemporary Mathematics, vol. 690, 161-176,May 2017.

Global Reflection principles, 

           P. D. Welch, currently in the Isaac Newton Institute pre-print series, No. NI12051-SAS, 
to appear as part of the Harvard ``Exploring the Frontiers of Incompleteness'' Series volume, 201?, Ed. P. Koellner, pp28.
 

Subscribe to Bristol