Mon, 13 Mar 2017

15:30 - 16:30
L5

Stable twisted cohomology via scanning

Oscar Randal-Williams
(Cambridge)
Abstract

The technique of scanning, or the parameterised Pontrjagin--Thom construction, has been extraordinarily successful in calculating the cohomology of configuration spaces (McDuff), moduli spaces of Riemann surfaces (Madsen, Tillmann, Weiss), moduli spaces of graphs (Galatius), and moduli spaces of manifolds of higher dimension (Galatius, R-W, Botvinnik, Perlmutter), with constant coefficients. In each case the method also works to study the cohomology of moduli spaces of objects equipped with a "tangential structure". I will explain how choosing an auxiliary highly-symmetric tangential structure often lets one calculate the cohomology of these moduli spaces with large families of twisted coefficients, by exploiting the symmetries of the tangential structure and using a little representation theory.

 

Thu, 02 Feb 2017

16:00 - 17:00
L6

Finding Arithmetic Implications of Mirror Symmetry

Tyler Kelly
(Cambridge)
Abstract

Mirror symmetry is a duality from string theory that states that given a Calabi-Yau variety, there exists another Calabi-Yau variety so that various geometric and physical data are exchanged. The investigation of this mirror correspondence has its roots in enumerative geometry and hodge theory, but has been later interpreted by Kontsevich in a categorical setting. This exchange in data is very powerful, and has been shown to persist for zeta functions associated to Calabi-Yau varieties, although there is no rigorous statement for what arithmetic mirror symmetry would be. Instead of directly trying to state and prove arithmetic mirror symmetry, we will instead use mirror symmetry as an intuitional framework to obtain arithmetic results for special Calabi-Yau pencils in projective space from the Hodge theoretic viewpoint. If time permits, we will discuss work in progress in starting to find arithmetic implications of Kontsevich's Homological Mirror Symmetry.

Mon, 06 Feb 2017

15:45 - 16:45
L6

Guirardel cores for multiple cubulations of a group

Mark Hagen
(Cambridge)
Abstract

Given two actions of a group $G$ on trees $T_1,T_2$, Guirardel introduced the "core", a $G$--cocompact CAT(0) subspace of $T_1\times
T_2$.  The covolume of the core is a natural notion of "intersection number" for the two tree actions (for example, if $G$ is a surface group
and $T_1,T_2$ are Bass-Serre trees associated to splittings along some curves, this "intersection number" is the one you'd expect).  We
generalise this construction by considering a fixed finitely-presented group $G$ equipped with finitely many essential, cocompact actions on
CAT(0) cube complexes $X_1,...,X_d$.  Inside $X=X_1\times ... \times X_d$, we find a $G$--invariant subcomplex $C$ which, although not convex
or necessarily CAT(0), has each component isometrically embedded with respect to the $\ell_1$ metric on $X$ (the key point is this change from
the CAT(0) to the $\ell_1$ viewpoint).  In the case where $d=2$ and $X_1,X_2$ are simplicial trees, $C$ is the Guirardel core.  Many
features of the Guirardel core generalise, and I will summarise these. For example, if the cubulations $G\to Aut(X_i)$ are "essentially
different", then $C$ is connected and $G$--cocompact.  Time permitting, I will discuss an application, namely a new proof of Nielsen realisation
for finite subgroups of $Out(F_n)$.  This talk is based on ongoing joint work with Henry Wilton.

Mon, 07 Nov 2016
15:45
L6

Polynomial-time Nielsen--Thurston type recognition

Richard Webb
(Cambridge)
Abstract

A cornerstone of the study of mapping class groups is the
Nielsen--Thurston classification theorem. I will outline a
polynomial-time algorithm that determines the Nielsen--Thurston type and
the canonical curve system of a mapping class. Time permitting, I shall
describe a polynomial-time algorithm to compute the quotient orbifold of
a periodic mapping class, and I shall discuss the conjugacy problem for
the mapping class group. This is joint work with Mark Bell.

Tue, 29 Nov 2016

15:45 - 16:45
L4

On short time existence of Lagrangian mean curvature flow

Kim Moore
(Cambridge)
Abstract

One of the simplest, and yet largely still open, questions that one can ask about special Lagrangian submanifolds is whether they exist in a given homology class. One possible approach to this problem is to evolve a given Lagrangian submanifold under mean curvature flow in the hope of reaching a special Lagrangian submanifold in the same homology class. It is known, however, that even for 'nice' initial conditions the flow will develop singularities in finite time. 

I will talk about a joint work with Tom Begley, in which we prove a short time existence result for Lagrangian mean curvature flow, where the initial condition is a Lagrangian submanifold of complex Euclidean space with a certain type of singularity. This is a first step to proving, as conjectured by Joyce, that one may 'continue' Lagrangian mean curvature flow after the occurrence of singularities.

Mon, 02 May 2016

12:00 - 13:00
L3

Another look at the information paradox: Soft black hole hair

Malcolm Perry
(Cambridge)
Abstract

The black hole information paradox comes about because of the classical no-hair theorems for black holes. I will discuss soft black hole hair in electrodynamics and in gravitation. Then some speculations on its relevance to the in formation paradox are presented.

Mon, 25 Apr 2016

16:00 - 17:00
L4

The decay of solutions of Maxwell-Klein-Gordon equations

Shiwu Yang
(Cambridge)
Abstract

It has been shown that there are global solutions to 
Maxwell-Klein-Gordon equations in Minkowski space with finite energy 
data. However, very little is known about the asymptotic behavior of the 
solution. In this talk, I will present recent progress on the decay 
properties of the solutions. We show the quantitative energy flux decay 
of the solutions with data merely bounded in some weighted energy space. 
The results in particular hold in the presence of large total charge. 
This is the first result that gives a complete and precise description 
of the global behavior of large nonlinear fields.
 

Mon, 29 Feb 2016
14:15
L4

The topology of area-minimizing surfaces in manifolds of non-negative curvature

Otis Chodosh
(Cambridge)
Abstract

Work of Schoen--Yau in the 70's/80's shows that area-minimizing (actually stable) two-sided surfaces in three-manifolds of non-negative scalar curvature are of a special topological type: a sphere, torus, plane or cylinder. The torus and cylinder cases are "borderline" for this estimate. It was shown by Cai--Galloway in the late 80's that the torus can only occur in a very special ambient three manifold. We complete the story by showing that a similar result holds for the cylinder. The talk should be accessible to those with a basic knowledge of curvature in Riemannian geometry.

Tue, 26 Apr 2016

17:00 - 18:00
L1

Tadashi Tokieda - Toy Models

Tadashi Tokieda
(Cambridge)
Abstract

Would you like to come see some toys?

'Toys' here have a special sense: objects of daily life which you can find or make in minutes, yet which, if played with imaginatively reveal surprises that keep scientists puzzling for a while. We will see table-top demos of many such toys and visit some of the science that they open up. The common theme is singularity.

Tadashi Tokieda is the Director of Studies in Mathematics at Trinity Hall, Cambridge and the Poincaré Professor in the Department of Mathematics, Stanford.

To book please email @email

Thu, 10 Mar 2016
12:00
L6

Sharp decay estimates for waves on black holes and Price's law

Dejan Gajic
(Cambridge)
Abstract
Price’s law postulates inverse-power polynomial decay rates for solutions to the wave equation on Schwarzschild backgrounds with respect to appropriately normalized null coordinates. Polynomial decay rates as a lower bound are known in the physics literature as “late-time power law tails”. I will discuss new physical space methods for proving sharp decay rates for solutions to the wave equation on a class of asymptotically flat, stationary, spherically symmetric spacetimes, establishing in particular the upper bounds and lower bounds in Price’s law on Schwarzschild. This work has been done jointly with Yannis Angelopoulos and Stefanos Aretakis.
Subscribe to Cambridge