Tue, 03 Mar 2015

15:45 - 16:45
L4

The closed-open string map for S^1-invariant Lagrangians

Dmitry Tonkonog
(Cambridge)
Abstract

Given a Lagrangian submanifold invariant under a Hamiltonian loop, we partially compute the image of the loop's Seidel element under the closed-open string map into the Hochschild cohomology of the Lagrangian. This piece captures the homology class of the loop's orbits on the Lagrangian and can help to prove that the closed-open map is injective in some examples. As a corollary we prove that $\mathbb{RP}^n$ split-generates the Fukaya category of $\mathbb{CP}^n$ over a field of characteristic 2, and the same for real loci of some other toric  varieties.

Mon, 19 Jan 2015
15:45
C6

Infinite loop spaces and positive scalar curvature

Oscar Randal-Williams
(Cambridge)
Abstract

It is well known that there are topological obstructions to a manifold $M$ admitting a Riemannian metric of everywhere positive scalar curvature (psc): if $M$ is Spin and admits a psc metric, the Lichnerowicz–Weitzenböck formula implies that the Dirac operator of $M$ is invertible, so the vanishing of the $\hat{A}$ genus is a necessary topological condition for such a manifold to admit a psc metric. If $M$ is simply-connected as well as Spin, then deep work of Gromov--Lawson, Schoen--Yau, and Stolz implies that the vanishing of (a small refinement of) the $\hat{A}$ genus is a sufficient condition for admitting a psc metric. For non-simply-connected manifolds, sufficient conditions for a manifold to admit a psc metric are not yet understood, and are a topic of much current research.

I will discuss a related but somewhat different problem: if $M$ does admit a psc metric, what is the topology of the space $\mathcal{R}^+(M)$ of all psc metrics on it? Recent work of V. Chernysh and M. Walsh shows that this problem is unchanged when modifying $M$ by certain surgeries, and I will explain how this can be used along with work of Galatius and myself to show that the algebraic topology of $\mathcal{R}^+(M)$ for $M$  of dimension at least 6 is "as complicated as can possibly be detected by index-theory". This is joint work with Boris Botvinnik and Johannes Ebert.

Thu, 06 Nov 2014

16:00 - 17:00
L5

Symmetric power functoriality for GL(2)

Jack Thorne
(Cambridge)
Abstract

Let f be an elliptic modular newform of weight at least 2. The 
problem of the automorphy of the symmetric power L-functions of f is a 
key example of Langlands' functoriality conjectures. Recently, the 
potential automorphy of these L-functions has been established, using 
automorphy lifting techniques, and leading to a proof of the Sato-Tate 
conjecture. I will discuss a new approach to the automorphy of these 
L-functions that shows the existence of Sym^m f for m = 1,...,8.

Mon, 20 Oct 2014

14:15 - 16:30
L5

Mirror symmetry for varieties of general type

Mark Gross
(Cambridge)
Abstract
I will discuss joint work with Ludmil Katzarkov and Helge Ruddat. Given a hypersurface X in a toric variety of positive Kodaira dimension, (with a certain number of hypotheses) we construct an object which we believe can be viewed as the mirror of X. In particular, it exhibits the usual interchange of Hodge numbers expected in mirror symmetry. This may seem puzzling at first. For example, a curve of genus g would be expected to have a mirror such that h^{0,0}=g, which is not possible for a variety. However, our mirror is a singular scheme Y along with a perverse sheaf F, whose cohomology carries a mixed Hodge structure. It then makes sense to compute Hodge numbers for F, and we find the traditional exchange of Hodge numbers.
Tue, 14 Oct 2014
15:45
L4

Exotic spheres and the topology of the symplectomorphism group

Georgios Rizell
(Cambridge)
Abstract

Using the fact that certain exotic spheres do not admit Lagrangian embeddings into $T^*{\mathcal S}^{n+1}$, as proven by Abouzaid and Ekholm-Smith, we produce non-trivial homotopy classes of the group of compactly supported symplectomorphisms of $T^*{\mathcal S}^n$. In particular, we show that the Hamiltonian isotopy class of the symplectic Dehn twist depends on the parametrisation used in the construction.  Related results are also obtained for $T^*({\mathcal S}^n \times {\mathcal S}^1)$.

Joint work with Jonny Evans.

 

Tue, 25 Nov 2014
15:45
L4

Complex Geometry and the Hele-Shaw flow

Julius Ross
(Cambridge)
Abstract

The goal of this talk is to discuss a link between the Homogeneous Monge Ampere Equation in complex geometry, and a certain flow in the plane motivated by some fluid mechanics.   After discussing and motivating the Dirichlet problem for this equation I will focus to what is probably the first non-trivial case that one can consider, and prove that it is possible to understand regularity of the solution in terms of what is known as the Hele-Shaw flow in the plane. As such we get, essentially explicit, examples of boundary data for which there is no regular solution, contrary to previous expectation.  All of this is joint work with David Witt Nystrom.

Tue, 28 Oct 2014

15:45 - 16:45
L4

Infinitely many monotone Lagrangian Tori in CP^2

Renato Vianna
(Cambridge)
Abstract
In previous work, we constructed an exotic monotone Lagrangian torus in $\mathbb{CP}^2$ (not Hamiltonian isotopic to the known Clifford and Chekanov tori) using techniques motivated by mirror symmetry. We named it $T(1,4,25)$ because, when following a degeneration of $\mathbb{CP}^2$ to the weighted projective space $\mathbb{CP}(1,4,25)$, it degenerates to the central fibre of the moment map for the standard torus action on $\mathbb{CP}(1,4,25)$. Related to each degeneration from $\mathbb{CP}^2$ to $\mathbb{CP}(a^2,b^2,c^2)$, for $(a,b,c)$ a Markov triple -- $a^2 + b^2 + c^2 = 3abc$ -- there is a monotone Lagrangian torus, which we call $T(a^2,b^2,c^2)$.  We employ techniques from symplectic field theory to prove that no two of them are Hamiltonian isotopic to each other.
Thu, 01 May 2014
14:00
L5

Adjoint sensitivity analysis in Thermoacoustics

Dr Matthew Juniper
(Cambridge)
Abstract

Thermoacoustic oscillations occur in combustion chambers when heat release oscillations lock into pressure oscillations. They were first observed in lamps in the 18th century, in rockets in the 1930s, and are now one of the most serious problems facing gas turbine manufacturers.

This theoretical and numerical study concerns an infinite-rate chemistry diffusion flame in a tube, which is a simple model for a flame in a combustion chamber. The problem is linearized around the non-oscillating state in order to derive the direct and adjoint equations governing the evolution of infinitesimal oscillations.

The direct equations are used to predict the frequency, growth rate, and mode shape of the most unstable thermoacoustic oscillations. The adjoint equations are then used to calculate how the frequency and growth rate change in response to (i) changes to the base state such as the flame shape or the composition of the fuel (ii) generic passive feedback mechanisms that could be added to the device. This information can be used to stabilize the system, which is verified by subsequent experiments.

This analysis reveals that, as expected from a simple model, the phase delay between velocity and heat-release fluctuations is the key parameter in determining the sensitivities. It also reveals that this thermo-acoustic system is exceedingly sensitive to changes in the base state. This analysis can be extended to more accurate models and is a promising new tool for the analysis and control of thermo-acoustic oscillations.

Subscribe to Cambridge