Mon, 26 Oct 2020

16:00 - 17:00

Diffusion Limit of Poisson Limit-Order Book Models

STEVE SHREVE
(Carnegie Mellon Univeristy)
Abstract

Trading of financial instruments has largely moved away from floor trading and onto electronic exchanges. Orders to buy and sell are queued at these exchanges in a limit-order book. While a full analysis of the dynamics of a limit-order book requires an understanding of strategic play among multiple agents, and is thus extremely complex, so-called zero-intelligence Poisson models have been shown to capture many of the statistical features of limit-order book evolution. These models can be addressed by traditional queueing theory techniques, including Laplace transform analysis. In this work, we demonstrate in a simple setting that another queueing theory technique, approximating the Poisson model by a diffusion model identified as the limit of a sequence of scaled Poisson models, can also be implemented. We identify the diffusion limit, find an embedded semi-Markov model in the limit, and determine the statistics of the embedded semi-Markov model. Along the way, we introduce and study a new type of process, a generalization of skew Brownian motion that we call two-speed Brownian motion.

Mon, 12 Jun 2017

16:30 - 17:30
L5

The stability of contact lines in fluids

Ian Tice
(Carnegie Mellon Univeristy)
Abstract

The contact line problem in interfacial fluid mechanics concerns the triple-junction between a fluid, a solid, and a vapor phase. Although the equilibrium configurations of contact lines have been well-understood since the work of Young, Laplace, and Gauss, the understanding of contact line dynamics remains incomplete and is a source of work in experimentation, modeling, and mathematical analysis. In this talk we consider a 2D model of contact point (the 2D analog of a contact line) dynamics for an incompressible, viscous, Stokes fluid evolving in an open-top vessel in a gravitational field. The model allows for fully dynamic contact angles and points. We show that small perturbations of the equilibrium configuration give rise to global-in-time solutions that decay to equilibrium exponentially fast.  This is joint with with Yan Guo.

Mon, 19 Oct 2015

16:00 - 17:00
L5

The tangential touch problem for fully nonlinear elliptic operators

Emanuel Indrei
(Carnegie Mellon Univeristy)
Abstract
The tangential touch problem in elliptic theory consists of exposing the dynamics of the free boundary near the fixed boundary in obstacle problems. The solution of this problem is discussed for fully nonlinear elliptic operators in two dimensions.
Based on joint work with Andreas Minne.
Thu, 19 Nov 2015

12:00 - 13:00
L6

Why gradient flows of some energies good for defect equilibria are not good for dynamics, and an improvement

Amit Acharya
(Carnegie Mellon Univeristy)
Abstract
Straight screw dislocations are line defects in crystalline materials and wedge disclinations are line defects in nematic liquid crystals. In this talk, I will discuss the development and implications of a single pde model intended to describe equilibrium states and dynamics of these defects. These topological defects are classically treated as singularities that result in infinite total energy in bodies of finite extent that behave linearly in their elastic response. I will explain how such singularities can be alleviated by the introduction of an additional 'eigendeformation' field, beyond the fundamental fields of the classical theories involved. The eigendeformation field bears much similarity to gauge fields in high- energy physics, but arises from an entirely different standpoint not involving the notion of gauge invariance in our considerations. It will then be shown that an (L2) gradient flow of a 'canonical', phase- field type (up to details) energy function coupling the deformation to the eigendeformation field that succeeds in predicting the defect equilibrium states of interest necessarily has to fail in predicting particular types of physically important defect dynamics. Instead, a dynamical model based on the same
energy but involving a conservation statement for topological charge of the line defect field for its evolution will be shown to succeed. This is joint work with Chiqun Zhang, graduate student at CMU.
Subscribe to Carnegie Mellon Univeristy