Tue, 04 Feb 2020

15:30 - 16:30
L4

Genus one mirror symmetry

Dennis Eriksson
(Chalmers University)
Abstract

Mirror symmetry, in a crude formulation, is usually presented as a correspondence between curve counting on a Calabi-Yau variety X, and some invariants extracted from a mirror family of Calabi-Yau varieties. After the physicists Bershadsky-Cecotti-Ooguri-Vafa (henceforth BCOV), this is organised according to the genus of the curves in X we wish to enumerate, and gives rise to an infinite recurrence of differential equations. In this talk, I will give a general introduction to these problems, and present a rigorous mathematical formulation of the BCOV conjecture at genus one, in terms of a lifting of the Grothendieck-Riemann-Roch. I will explain the main ideas of the proof of the conjecture for Calabi-Yau hypersurfaces in projective space, based on the Riemann-Roch theorem in Arakelov geometry. Our results generalise from dimension 3 to arbitrary dimensions previous work of Fang-Lu-Yoshikawa.
 

This is joint work with G. Freixas and C. Mourougane.

Tue, 11 Feb 2014

17:00 - 18:15
C6

A functional calculus construction of layer potentials for elliptic equations

Andreas Rosen
(Chalmers University)
Abstract

We prove that the double layer potential operator and the gradient of the single layer potential operator are L_2 bounded for general second order divergence form systems. As compared to earlier results, our proof shows that the bounds for the layer potentials are independent of well posedness for the Dirichlet problem and of De Giorgi-Nash local estimates. The layer potential operators are shown to depend holomorphically on the coefficient matrix A\in L_\infty, showing uniqueness of the extension of the operators beyond singular integrals. More precisely, we use functional calculus of differential operators with non-smooth coefficients to represent the layer potential operators as bounded Hilbert space operators. In the presence of Moser local bounds, in particular for real scalar equations and systems that are small perturbations of real scalar equations, these operators are shown to be the usual singular integrals. Our proof gives a new construction of fundamental solutions to divergence form systems, valid also in dimension 2.

Subscribe to Chalmers University