Thu, 25 May 2023

14:00 - 15:00
Lecture Room 3

Balancing Inexactness in Matrix Computations

Erin Carson
(Charles University)
Abstract


On supercomputers that exist today, achieving even close to the peak performance is incredibly difficult if not impossible for many applications. Techniques designed to improve the performance of matrix computations - making computations less expensive by reorganizing an algorithm, making intentional approximations, and using lower precision - all introduce what we can generally call ``inexactness''. The questions to ask are then:

1. With all these various sources of inexactness involved, does a given algorithm still get close enough to the right answer?
2. Given a user constraint on required accuracy, how can we best exploit and balance different types of inexactness to improve performance?

Studying the combination of different sources of inexactness can thus reveal not only limitations, but also new opportunities for developing algorithms for matrix computations that are both fast and provably accurate. We present few recent results toward this goal, icluding mixed precision randomized decompositions and mixed precision sparse approximate inverse preconditioners.

Mon, 27 Feb 2023
16:30
L4

Optimality problems in function spaces

Luboš Pick
(Charles University)
Abstract

In mathematical modelling, data and solutions are often represented as measurable functions, and their quality is being captured by their membership to a certain function space. One of the core questions arising in applications of this approach is the comparison of the quality of the data and that of the solution. A particular attention is being paid to optimality of the results obtained. A delicate choice of scales of suitable function spaces is required in order to balance the expressivity (the ability to capture fine mathematical properties of the model) and the accessibility (the level of its technical difficulty) for a practical use. We will give an overview of the research area which grew out of these questions and survey recent results obtained in this direction as well as challenging open questions. We will describe a development of a powerful method based on the so-called reduction principles and demonstrate its use on specific problems including the continuity of Sobolev embeddings or boundedness of pivotal integral operators such as the Hardy - Littlewood maximal operator and the Laplace transform.

Tue, 21 Nov 2017
14:30
L6

Polynomail Expansion

Zdenek Dvorak
(Charles University)
Abstract

A class C of graphs has polynomial expansion if there exists a polynomial p such that for every graph G from C and for every integer r, each minor of G obtained by contracting disjoint subgraphs of radius at most r is p(r)-degenerate. Classes with polynomial expansion exhibit interesting structural, combinatorial, and algorithmic properties. In the talk, I will survey these properties and propose further research directions.

Subscribe to Charles University