Mon, 06 Feb 2017

14:15 - 15:15
L3

Scaling limits of fluctuations in stochastic homogenization

YU GU
(Stanford University)
Abstract

Abstract: Equations with small scales abound in physics and applied science. When the coefficients vary on microscopic scales, the local fluctuations average out under certain assumptions and we have the so-called homogenization phenomenon. In this talk, I will try to explain some probabilistic approaches we use to obtain the first order random fluctuations in stochastic homogenization. If homogenization is to be viewed as a law of large number type result, here we are looking for a central limit theorem. The tools we use include the Kipnis-Varadhan's method, a quantitative martingale central limit theorem and the Stein's method. Based on joint work with Jean-Christophe Mourrat. 

Mon, 18 Jan 2016

16:00 - 17:00
L3

4th moment of quadratic Dirichlet L-functions in function fields

Alexandra Florea
(Stanford University)
Abstract

We discuss moments of $L$-functions in function fields, in the hyperelliptic ensemble, focusing on the fourth moment of quadratic Dirichlet $L$-functions at the critical point. We explain how to obtain an asymptotic formula with some of the secondary main terms.

Fri, 19 Jun 2015

16:00 - 17:00
L1

The Shape of Data

Gunnar Carlsson
(Stanford University)
Abstract

There has been a great deal of attention paid to "Big Data" over the last few years.  However, often as not, the problem with the analysis of data is not as much the size as the complexity of the data.  Even very small data sets can exhibit substantial complexity.  There is therefore a need for methods for representing complex data sets, beyond the usual linear or even polynomial models.  The mathematical notion of shape, encoded in a metric, provides a very useful way to represent complex data sets.  On the other hand, Topology is the mathematical sub discipline which concerns itself with studying shape, in all dimensions.  In recent years, methods from topology have been adapted to the study of data sets, i.e. finite metric spaces.  In this talk, we will discuss what has been
done in this direction and what the future might hold, with numerous examples.

Mon, 29 Apr 2013
16:30
L2

Systemic Risk

George Papanicolaou
(Stanford University)
Abstract

The quantification and management of risk in financial markets
is at the center of modern financial mathematics. But until recently, risk
assessment models did not consider the effects of inter-connectedness of
financial agents and the way risk diversification impacts the stability of
markets. I will give an introduction to these problems and discuss the
implications of some mathematical models for dealing with them. 

Thu, 06 Jun 2013
17:30
Martin Wood Lecture

Strategy-Proof Auctions for Complex Procurement

Paul Milgrom
(Stanford University)
Abstract

Some real resource allocation problems are so large and complex that optimization would computationally infeasible, even with complete information about all the relevant values. For example, the proposal in the US to use television broadcasters' bids to determine which stations go off air to make room for wireless broadband is characterized by hundreds of thousands of integer constraints. We use game theory and auction theory to characterize a class of simple, strategy-proof auctions for such problems and show their equivalence to a class of "clock auctions," which make the optimal bidding strategy obvious to all bidders. We adapt the results of optimal auction theory to reduce expected procurement costs and prove that the procurement cost of each clock auction is the same as that of the full information equilibrium of its related paid-as-bid (sealed-bid) auction.

Fri, 13 Apr 2012
15:00
DH 1st floor SR

Networks, Communities and the Ground-Truth

Jure Leskovec
(Stanford University)
Abstract

Nodes in complex networks organize into communities of nodes that share a common property, role or function, such as social communities, functionally related proteins, or topically related webpages. Identifying such communities is crucial to the understanding of the structural and functional roles of networks.

Current work on overlapping community detection (often implicitly) assumes that community overlaps are less densely connected than non-overlapping parts of communities. This is unnatural as it means that the more communities nodes share, the less likely it is they are linked. We validate this assumption on a diverse set of large networks and find an increasing relationship between the number of shared communities of a pair of nodes and the probability of them being connected by an edge, which means that parts of the network where communities overlap tend to be more densely connected than the non-overlapping parts of communities.

Existing community detection methods fail to detect communities with such overlaps. We propose a model-based community detection method that builds on bipartite node-community affiliation networks. Our method successfully detects overlapping, non-overlapping and hierarchically nested communities. We accurately identify relevant communities in networks ranging from biological protein-protein interaction networks to social, collaboration and information networks. Our results show that while networks organize into overlapping communities, globally networks also exhibit a nested core-periphery structure, which arises as a consequence of overlapping parts of communities being more densely connected.

Thu, 03 May 2007

14:00 - 15:00
Comlab

Matrix Computations and the secular equation

Prof Gene Golub
(Stanford University)
Abstract

The "secular equation" is a special way of expressing eigenvalue

problems in a variety of applications. We describe the secular

equation for several problems, viz eigenvector problems with a linear

constraint on the eigenvector and the solution of eigenvalue problems

where the given matrix has been modified by a rank one matrix. Next we

show how the secular equation can be approximated by use of the

Lanczos algorithm. Finally, we discuss numerical methods for solving

the approximate secular equation.

Thu, 13 Jan 2005

14:00 - 15:00
Comlab

Resolution of Gibbs' phenomenon from global to semi-global

Dr Jared Tanner
(Stanford University)
Abstract

Spectral projections enjoy high order convergence for globally smooth functions. However, a single discontinuity introduces O(1) spurious oscillations near the discontinuity and reduces the high order convergence rate to first order, Gibbs' Phenomena. Although a direct expansion of the function in terms of its global moments yields this low order approximation, high resolution information is retained in the global moments. Two techniques for the resolution of the Gibbs' phenomenon are discussed, filtering and reprojection methods. An adaptive filter with optimal joint time-frequency localization is presented, which recovers a function from its N term Fourier projection within the error bound \exp(-Nd(x)), where d(x) is the distance from the point being recovered to the nearest discontinuity. Symmetric filtering, however, must sacrifice accuracy when approaching a discontinuity. To overcome this limitation, Gegenbauer postprocessing was introduced by Gottlieb, Shu, et al, which recovers a function from its N term Fourier projection within the error bound \exp(-N). An extension of Gegenbauer postprocessing with improved convergence and robustness properties is presented, the robust Gibbs complements. Filtering and reprojection methods will be put in a unifying framework, and their properties such as robustness and computational cost contrasted. This research was conducted jointly with Eitan Tadmor and Anne Gelb.

Mon, 04 Oct 2010
17:00
Gibson 1st Floor SR

Hilbert's Sixth Problem

Tai Ping Liu
(Stanford University)
Abstract

Hilbert Sixth Problem of Axiomatization of Physics is a problem of general nature and not of specific problem. We will concentrate on the kinetic theory; the relations between the Newtonian particle systems, the Boltzmann equation and the fluid dynamics. This is a rich area of applied mathematics and mathematical physics. We will illustrate the richness with some examples, survey recent progresses and raise open research directions.

Subscribe to Stanford University