Algebra Seminar

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
27 September 2018

For a reductive group $ G $, Steinberg established a map from the Weyl group to nilpotent $ G $-orbits using momentmaps on double flag varieties.  In particular, in the case of the general linear group, he re-interpreted the Robinson-Schensted correspondence between the permutations and pairs of standard tableaux of the same shape in terms of product of complete flags.

We generalize his theory to the case of symmetric pairs $ (G, K) $, and obtained two different maps.  In the case where $ (G, K) = (\GL_{2n}, \GL_n \times \GL_n) $, one of the maps is a generalized Steinberg map, which induces a generalization of the RS correspondence for degenerate permutations.  The other is an exotic moment map, which maps degenerate permutations to signed Young diagrams, i.e., $ K $-orbits in the Cartan space $ (\lie{g}/\lie{k})^* $.

We explain geometric background of the theory and combinatorial procedures which produces the above mentioned maps.

This is an on-going joint work with Lucas Fresse.

9 October 2018
Dima Pasechnik

Abstract regular polytopes are finite quotients of Coxeter complexes
with string diagram, satisfying a natural intersection property, see
e.g. [MMS2002]. They arise in a number of geometric and group-theoretic
contexts. The first class of such objects, beyond the
well-understood examples coming from finite and affine Coxeter groups,
are locally toroidal cases, e.g.  extensions of quotients of the affine
F_4 complex [3,3,4,3].  In 1996 P.McMullen & E.Schulte constructed a
number of examples of locally toroidal abstract regular polytopes of
type [3,3,4,3,3], and conjectured completeness of their list. We
construct counterexamples to the conjecture using a Y-shaped
presentation for a subgroup of the Monster, and discuss various
related questions.

16 October 2018
Dessislava Kochloukova

We will discuss some recent results with Martin Bridson about 
Sidki's construction X(G). In particular, if G is a finitely presented
group then X(G) is a finitely presented group. We will discuss as well the
result that if G has polynomial isoperimetric function and the maximal
metabelian quotient of G is virtually nilpotent then X(G) has polynomial
isoperimetric function. Part of the arguments we will use have homological

Add to My Calendar