A class C of graphs has polynomial expansion if there exists a polynomial p such that for every graph G from C and for every integer r, each minor of G obtained by contracting disjoint subgraphs of radius at most r is p(r)-degenerate. Classes with polynomial expansion exhibit interesting structural, combinatorial, and algorithmic properties. In the talk, I will survey these properties and propose further research directions.

# Combinatorial Theory Seminar

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Understanding the distribution of subgraph counts has long been a central question in the study of random graphs. In this talk, we consider the distribution of Sn, the number of K4 subgraphs, in the Erdös Rényi random graph G(n, p). When the edge probability p \in (0, 1) is constant, a classical central limit theorem for Sn states that (Sn−µn)/σn converges in distribution. We establish a stronger form of convergence, namely the corresponding local limit theorem, which is joint work with O. Riordan.

The interplay of minimum degree and 'structural properties' of large graphs with a given forbidden subgraph is a central topic in extremal graph theory. For a given graph $F$ we define the homomorphism threshold as the infimum $\alpha$ such that every $n$-vertex $F$-free graph $G$ with minimum degree $>\alpha n$ has a homomorphic image $H$ of bounded size (independent of $n$), which is $F$-free as well. Without the restriction of $H$ being $F$-free we recover the definition of the chromatic threshold, which was determined for every graph $F$ by Allen et al. The homomorphism threshold is less understood and we present recent joint work with O. Ebsen on the homomorphism threshold for odd cycles.