(Fiyanshu) Impact of Electrolyte Microstructure on Power Density in Solid-State Batteries: Insights from Phase-Field Modelling. (Moschella) Macroscopic Models for Hard Anisotropic Particles
The join button will be published 30 minutes before the seminar starts (login required).
Abstract
Title:
Impact of Electrolyte Microstructure on Power Density in Solid-State Batteries: Insights from Phase-Field Modelling
Abstract:
This talk presents a mesoscopic modelling framework that links electrolyte microstructure to cell-level performance in solid-state batteries. Using a unified diffuse-interface formulation expressed directly in electrochemical potentials, the approach simulates solid polymer electrolyte blend morphologies and evaluates coupled ionic transport and interfacial kinetics within these microstructures. By embedding the resulting morphologies into full cell-scale electrochemical models, the framework provides quantitative guidance for selecting optimal blend compositions to maximize power density. A central finding is that, beyond microstructure geometry alone, energy-level alignment between electrolyte phases critically shapes effective ionic pathways and rate performance.