Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Wed, 28 Sep 2022 09:00 -
Tue, 30 Jun 2026 17:00
Mathematical Institute

Cascading Principles - a major mathematically inspired art exhibition by Conrad Shawcross - extended until June 2026

Further Information

Oxford Mathematics is delighted to be hosting one of the largest exhibitions by the artist Conrad Shawcross in the UK. The exhibition, Cascading Principles: Expansions within Geometry, Philosophy, and Interference, brings together over 40 of Conrad's mathematically inspired works from the past seventeen years. Rather than in a gallery, they are placed in the working environment of the practitioners of the subject that inspired them, namely mathematics.

Conrad Shawcross models scientific thought and reasoning within his practice. Drawn to mathematics, physics, and philosophy from the early stages of his artistic career, Shawcross combines these disciplines in his work. He places a strong emphasis on the nature of matter, and on the relativity of gravity, entropy, and the nature of time itself. Like a scientist working in a laboratory, he conceives each work as an experiment. Modularity is key to his process and many works are built from a single essential unit or building block. If an atom or electron is a basic unit for physicists, his unit is the tetrahedron.

Unlike other shapes, a tetrahedron cannot tessellate with itself. It cannot cover or form a surface through its repetition - one tetrahedron is unable to fit together with others of its kind. Whilst other shapes can sit alongside one another without creating gaps or overlapping, tetrahedrons cannot resolve in this way. Shawcross’ Schisms are a perfect demonstration of this failure to tessellate. They bring twenty tetrahedrons together to form a sphere, which results in a deep crack and ruptures that permeate its surface. This failure of its geometry means that it cannot succeed as a scientific model, but it is this very failure that allows it to succeed as an art work, the cracks full of broad and potent implications.

The show includes all Conrad's manifold geometric and philosophical investigations into this curious, four-surfaced, triangular prism to date. These include the Paradigms, the Lattice Cubes, the Fractures, the Schisms, and The Dappled Light of the Sun. The latter was first shown in the courtyard of the Royal Academy and subsequently travelled all across the world, from east to west, China to America.

The show also contains the four Beacons. Activated like a stained-glass window by the light of the sun, they are composed of two coloured, perforated disks moving in counter rotation to one another, patterning the light through the non-repeating pattern of holes, and conveying a message using semaphoric language. These works are studies for the Ramsgate Beacons commission in Kent, as part of Pioneering Places East Kent.

The exhibition Cascading Principles: Expansions within Geometry, Philosophy, and Interference is curated by Fatoş Üstek, and is organised in collaboration with Oxford Mathematics. 

The exhibition is open 9am-5pm, Monday to Friday. Some of the works are in the private part of the building and we shall be arranging regular tours of that area. If you wish to join a tour please email @email.

The exhibition runs until 30 June 2026. You can see and find out more here.

Watch the four public talks centred around the exhibition (featuring Conrad himself).

The exhibition is generously supported by our longstanding partner XTX Markets.

Images clockwise from top left of Schism, Fracture, Paradigm and Axiom

Schism Fracture

Axiom Paradigm

Fri, 28 Feb 2025 09:00 -
Wed, 31 Dec 2025 00:00
Mezzanine

Kathleen Hyndman - Nature+Maths=Art

Further Information

The Mathematical Institute is delighted to be hosting a major exhibition of artist Kathleen Hyndman's mathematically inspired work.

The exhibition of drawings and paintings illustrate Hyndman’s desire to see nature and the world around her in mathematical sequences and geometrical patterns. Golden Section proportions and angles, prime numbers as well as Fibonacci numbers and eccentric constructions are all used to create works achieving a calm and balanced unity.

Born in Essex, Hyndman trained at Kingston-upon-Thames School of Art and exhibited widely in the UK and abroad, including MOMA Oxford and the Hayward Annual in London. As well as a full time artist, she was also a teacher and mother of two. She lived and had her studio in Kingston Bagpuize in Oxfordshire and had exhibitions at Zuleika Gallery in Woodstock until her death in 2022.

Open Monday to Friday 9am to 5pm.

The exhibition is curated by Zuleika Gallery and Professor Martin Kemp FBA, and will run until the end of the year.

Exhibition brochure

Bottom from left:  Hot Breeze, 1994; Heat, 1976; Exit (a seventeen sided work), 1993; Straight Line Rotation, White on Black. Forest, 1986

Below: film of the exhibition by Evan Nedyalkov

Wed, 05 Nov 2025
11:00
L4

Coming up from $-\infty$ for KPZ via stochastic control

Carlos Villanueva Mariz
(Free University Berlin)
Abstract

We derive a lower bound, independent of the initial condition, for the solution of the KPZ equation on the torus, using its representation as the value function of a stochastic control problem.

With the same techniques we also prove a bound for its oscillation, again independent of initial conditions, which is related to Harnack's inequality for the (rough) heat equation.

 

Wed, 05 Nov 2025

14:30 - 15:30
N3.12

Mathematrix: Crafts and Cakes

(Mathematrix)
Abstract

Come take a break and get to know other Mathematrix members over some crafts! All supplies and sweet treats provided.

Thu, 06 Nov 2025
11:00
C6

A non-definability result in continuous model theory

Yizhi Li
(University of Oxford)
Abstract

This talk focuses on the logic side of the following result: the non-definability of free independence in the theory of tracial von Neumann algebras and C*-probability spaces. I will introduce continuous model theory, which is suitable for the study of metric structures. Definability in the continuous setting differs slightly from that in the discrete case. I will introduce its definition, give examples of definable sets, and prove an equivalent ultrapower condition of it. A. Berenstein and C. W. Henson exposited model theory for probability spaces in 2023, which was done with continuous model theory. It makes it natural for us to consider the definability of the notion of free independence in probability spaces. I will explain our result, which gives an example of a non-definable set.

This is work with William Boulanger and Emma Harvey, supervised by Jenny Pi and Jakub Curda.

Thu, 06 Nov 2025

12:00 - 13:00
L3

The KdV equation: exponential asymptotics, complex singularities and Painlevé II

Prof. Scott W McCue
(School of Mathematical Sciences Queensland University of Technology Brisbane)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Scott W. McCue is Professor of Applied Mathematics at Queensland University of Technology. His research spans interfacial dynamics, water waves, fluid mechanics, mathematical biology, and moving boundary problems. He is widely recognised for his contributions to modelling complex free-boundary phenomena, including thin-film rupture, Hele–Shaw flows, and biological invasion processes.

Abstract

We apply techniques of exponential asymptotics to the KdV equation to derive the small-time behaviour for dispersive waves that propagate in one direction.  The results demonstrate how the amplitude, wavelength and speed of these waves depend on the strength and location of complex-plane singularities of the initial condition.  Using matched asymptotic expansions, we show how the small-time dynamics of complex singularities of the time-dependent solution are dictated by a Painlevé II problem with decreasing tritronquée solutions.  We relate these dynamics to the solution on the real line.

 

 

Thu, 06 Nov 2025

12:00 - 12:30
Lecture Room 4

Lanczos with compression for symmetric eigenvalue problems

Nian Shao
(École Polytechnique Fédérale de Lausanne - EPFL)
Abstract
The Lanczos method with implicit restarting is one of the most successful algorithms for computing a few eigenpairs of large-scale symmetric matrices.Despite its widespread use, the core idea of employing polynomial filtering for restarting has remained essentially unchanged for over two decades. In this talk, we introduce a novel compression strategy, termed Lanczos with compression, as an alternative to restarting. Unlike traditional restarting, Lanczos with compression sacrifices the Krylov subspace structure but preserves the subsequent Lanczos sequence. Our theoretical analysis shows that the compression introduces only a small error compared to the standard Lanczos method. This talk is based on joint work with Angelo A. Casulli (GSSI) and Daniel Kressner (EPFL).
Thu, 06 Nov 2025

12:00 - 13:00
C5

Ricci curvature and orientability

Camillo Brena
(IAS Princeton)
Abstract

This talk will focus on various definitions of orientability for non-smooth spaces with Ricci curvature bounded from below. The stability of orientability and non-orientability will be discussed. As an application, we will prove the orientability of 4-manifolds with non-negative Ricci curvature and Euclidean volume growth. This work is based on a collaboration with E. Bruè and A. Pigati.

Thu, 06 Nov 2025

14:00 - 15:00
Lecture Room 3

When AI Goes Awry

Des Higham
(University of Edinburgh)
Abstract

Over the last decade, adversarial attack algorithms have revealed instabilities in artificial intelligence (AI) tools. These algorithms raise issues regarding safety, reliability and interpretability; especially in high risk settings. Mathematics is at the heart of this landscape, with ideas from  numerical analysis, optimization, and high dimensional stochastic analysis playing key roles. From a practical perspective, there has been a war of escalation between those developing attack and defence strategies. At a more theoretical level, researchers have also studied bigger picture questions concerning the existence and computability of successful attacks. I will present examples of attack algorithms for neural networks in image classification, for transformer models in optical character recognition and for large language models. I will also show how recent generative diffusion models can be used adversarially. From a more theoretical perspective, I will outline recent results on the overarching question of whether, under reasonable assumptions, it is inevitable that AI tools will be vulnerable to attack.

Thu, 06 Nov 2025

16:00 - 17:00
L5

The value of information flows in the stock market - joint with Hai Duong

Prof. Bart Taub
(University of Glasgow)
Abstract
Stock market traders who trade because of information they possess reveal that information to the rest of the market in the process of bidding: if the information is positive they bid up the price, and if it is negative they lower it.   New information constantly develops and is brought to the market in this way, and because it influences prices, it ultimately influences the allocation of investments by firms.  
 
Using a new approach, we estimate the flow of this information and the price of that information (different from the stock price), and thus its value, for each stock, and then sum up this value across all stocks, obtaining an estimate of the total value of the dynamic flow of information in the stock market as a whole. This requires digesting the records of millions of stock orders (including cancelled orders, not just executed trades) to construct the dynamic limit order book and estimate the information flow and value from its structure.  
 
Our results support the notion that the cross-correlation of price impact across stocks is consistent with the CAPM: there is a single systematic component of price impact, and this is driven by the volatility of the systematic component of the stock market. This result suggests that by separating the underlying information into two components, systematic and idiosyncratic, informed traders distinguish between productive assets that have a systematic impact on the economy and those that can be diversified.  


 

Thu, 06 Nov 2025
17:00
L3

Composition of transseries, monotonicity, and analyticity

Vincenzo Mantova
(University of Leeds)
Abstract
Transseries generalise power series by including exponential and logarithmic terms, if not more, and can be interpreted as germs of a non-standard Hardy field by composition (for instance, on surreal numbers). I'll discuss a few results that must 'obviously' be true, yet their proofs are not obvious: that composition is monotonic in both arguments, once claimed but not proved by Edgar for LE-series, that it satisfies a suitable Taylor theorem and that in fact composition is 'analytic with large radius of convergence' (joint with V. Bagayoko), something which appeared before in various special forms, but not in full generality. I'll show how monotonicity and Taylor can be used to prove some fairly general normalisation results for hyperbolic transseries (joint with D. Peran, J.-P. Rolin, T. Servi).
Fri, 07 Nov 2025

11:00 - 12:00
L4

Programming cells using feedback control and whole-cell models

Prof Lucia Marucci
(Dept of Maths University of Bristol)
Abstract
The ability to program and design ad hoc cellular and biological processes offers exciting opportunities in basic research, in the biotechnology industry and in the clinic. Difficulties in engineering cellular phenotypes robust to changes and perturbations, as well as the lack of established tools to design biological functions across scales, still represent major roadblocks.  
 
In this talk I will start discussing our recent research that leverages feedback control to engineer robust cellular phenotypes. I will show results obtained using intracellular, external or multicellular controllers in both bacterial and mammalian cells, and new applications of cybergenetics methodologies we are currently exploring.  I will also mention a complementary approach aimed at rational and computer-aided cell design via whole-cell models (WCMs), which are mathematical models designed to capture the function of all genes and multiscale processes within a cell. The design of minimal bacterial genomes will be used as a proof-of-concept; I will also show how machine learning can support WCMs’ output interpretation and solve their computational burden challenge.  
Our tools and results should make the design and control of complex cellular phenotypes and laboratory engineering a step closer.
Fri, 07 Nov 2025
12:00
L3

Hypergeometric Methods in Quantum Field Theory

Sven Stavinski
(University of Bonn)
Abstract

In this talk I will give a gentle introduction to some aspects of the theory of hypergeometric functions as a natural language for addressing various integrals appearing in quantum field theory (QFT). In particular I will focus on the so-called intersection pairings as well as the differential equations satisfied by the integrals, and I will show how these aspects of the mathematical theory can find a natural interpretation in concrete QFT applications. I will mostly focus on Feynman integrals as paradigmatic example, where the language will shed new light on our most powerful method for computing Feynman integrals as well as their non-local symmetries. I will then give an outlook how these methods could allow us to also learn about integrals appearing in other places in field and string theory, such as Coulomb branch amplitudes, celestial holography and AdS (supergravity and string) amplitudes.

Mon, 10 Nov 2025

14:00 - 15:00
Lecture Room 3

From reinforcement learning to transfer learning and diffusion models, a (rough) differential equation perspective

Prof Xin Guo
(Berkeley, USA)
Abstract

Transfer learning is a machine learning technique that leverages knowledge acquired in one domain to improve learning in another, related task. It is a foundational method underlying the success of large language models (LLMs) such as GPT and BERT, which were initially trained for specific tasks. In this talk, I will demonstrate how reinforcement learning (RL), particularly continuous time RL, can benefit from incorporating transfer learning techniques, especially with respect to convergence analysis. I will also show how this analysis naturally yields a simple corollary concerning the stability of score-based generative diffusion models.

Based on joint work with Zijiu Lyu of UC Berkeley.

 

 

Mon, 10 Nov 2025
14:15
L4

On the diffeomorphism classification of a certain family of non-negatively curved 7-manifolds

Martin Kerin
(Durham University)
Abstract

A 2-connected, rational homotopy 7-sphere is classified up to diffeomorphism by three invariants: its (finite) 4th cohomology group, its q-invariant and its Eells-Kuiper invariant.  The q-invariant is a quadratic refinement of the linking form and determines the homeomorphism type, while the Eells-Kuiper invariant then pins down the diffeomorphism type.  In this talk, I will discuss the diffeomorphism classification of a certain family of non-negatively curved, 2-connected, rational homotopy 7-spheres, discovered by Sebastian Goette, Krishnan Shankar and myself, which contains, in particular, all $S^3$-bundles over $S^4$ and all exotic 7-spheres.

Mon, 10 Nov 2025
15:30
L5

Ribbon concordance and fibered predecessors

Steven Sivek
(Imperial)
Abstract
Ribbon concordance defines an interesting relation on knots.  In his initial work on the topic, Gordon asked whether it is a partial order, and this question was open for over 40 years until Agol answered it affirmatively in 2022.  However, we still don’t know many basic facts about this partial order: for example, does any infinite chain of ribbon concordances $\dots \leq K_3 \leq K_2 \leq K_1$ eventually stabilize?  Even better, if we fix a knot $K$ in the 3-sphere, are there only finitely many knots that are ribbon concordant to $K$?  I’ll talk about joint work with John Baldwin toward these questions, in which we use tools from both Heegaard Floer homology and hyperbolic geometry to say that at the very least, there are only finitely many fibered hyperbolic knots ribbon concordant to $K$.

 
Mon, 10 Nov 2025
15:30
L3

$\Phi^4_3$ as a Markov field

Nikolay Barashkov
(Max Planck Institute Leipzig)
Abstract

Random Fields with posses the Markov Property have played an important role in the development of Constructive Field Theory. They are related to their relativistic counterparts through Nelson Reconstruction. In this talk I will describe an attempt to understand the Markov Property of the $\Phi^4$ measure in 3 dimensions. We will also discuss the Properties of its Generator (i.e) the $\Phi^4_3$ Hamiltonian. This is based on Joint work with T. Gunaratnam.

Mon, 10 Nov 2025

16:30 - 17:30
L4

Phase mixing for the Vlasov equation in cosmology

Prof Martin Taylor
(Imperial)
Abstract

The Friedmann--Lemaitre--Robertson--Walker family of spacetimes are the standard homogenous isotropic cosmological models in general relativity.  Each member of this family describes a torus, evolving from a big bang singularity and expanding indefinitely to the future, with expansion rate encoded by a suitable scale factor.  I will discuss a mixing effect which occurs for the Vlasov equation on these spacetimes when the expansion rate is suitably slow.

 This is joint work with Renato Velozo Ruiz (Imperial College London).

Tue, 11 Nov 2025
13:00
L2

The Cosmological Grassmannian

Guilherme Leite Pimentel
(Pisa SNS)
Abstract
I will show how a Grassmannian turns out to be the natural kinematic space for describing correlation functions of massless spinning particles, in four dimensional (Anti)-de Sitter space.
In this kinematic space, tree-level cosmological correlators factorize in a simple way and can be bootstrapped with rather ease, revealing some hidden beauty.
Tue, 11 Nov 2025
14:00
L6

On the Local Converse Theorem for Depth $\frac{1}{N}$ Supercuspidal Representations of $\text{GL}(2N, F)$.

David Luo
Abstract

In this talk, David Luo will use type theory to construct a family of depth $\frac{1}{N}$ minimax supercuspidal representations of $p$-adic $\text{GL}(2N, F)$ which we call \textit{middle supercuspidal representations}. These supercuspidals may be viewed as a natural generalization of simple supercuspidal representations, i.e. those supercuspidals of minimal positive depth. Via explicit computations of twisted gamma factors, David will show that middle supercuspidal representations may be uniquely determined through twisting by quasi-characters of $F^{\times}$ and simple supercuspidal representations of $\text{GL}(N, F)$. Furthermore, David poses a conjecture which refines the local converse theorem for general supercuspidal representations of $\text{GL}(n, F)$.

Tue, 11 Nov 2025
14:00
C4

Towards Precision in the Diagnostic Profiling of Patients: Leveraging Symptom Dynamics in the Assessment and Treatment of Mental Disorders

Omid Ebrahimi
(Department of Experimental Psychology, University of Oxford)
Abstract

Major depressive disorder (MDD) is a heterogeneous mental disorder. International guidelines present overall symptom severity as the key dimension for clinical characterisation. However, additional layers of heterogeneity may reside within severity levels related to how symptoms interact with one-another in a patient, called symptom dynamics. We investigate these individual differences by estimating the proportion of patients that display differences in their symptom dynamics while sharing the same diagnosis and overall symptom severity. We show that examining symptom dynamics provides information about the person-specific psychopathological expression of patients beyond severity levels by revealing how symptoms aggravate each other over time. These results suggest that symptom dynamics may serve as a promising new dimension for clinical characterisation. Areas of opportunity are outlined for the field of precision psychiatry in uncovering disorder evolution patterns (e.g., spontaneous recovery; critical worsening) and the identification of granular treatment effects by moving toward investigations that leverage symptom dynamics as their foundation. Future work aimed at investigating the cascading dynamics underlying depression onset and maintenance using the large-scale (N > 5.5 million) CIPA Study are outlined. 

Tue, 11 Nov 2025
15:30
L4

How to make log structures

Alessio Corti
(Imperial College London)
Abstract

I will speak about my work with Helge Ruddat on how to construct explicitly log structures and morphisms. I will also discuss some motivation. I will try to stay informal and assume no prior knowledge of log structures.

Tue, 11 Nov 2025
16:00
C3

Fixed Points of the Berezin Transform on Fock-Type Spaces

Ghazaleh Asghari
(University of Reading)
Abstract

We study the fixed points of the Berezin transform on the Fock-type spaces F^{2}_{m} with the weight e^{-|z|^{m}}, m > 0. It is known that the Berezin transform is well-defined on the polynomials in z and \bar{z}. In this talk from Ghazaleh Asghari from Reading University, we focus on the polynomial fixed points and we show that these polynomials must be harmonic, except possibly for countably many m \in (0,\infty). We also show that, in some particular cases, the fixed point polynomials are harmonic for all m.

Wed, 12 Nov 2025
11:00
L4

TBA

Trishen Gunaratnam
(Tata Institute for Fundamental Research)
Wed, 12 Nov 2025
16:00
L4

Motivic Invariants of Automorphisms

Jesse Pajwani
(University of Bristol)
Abstract

When doing arithmetic geometry, it is helpful to have invariants of the objects which we are studying that see both the arithmetic and the geometry. Motivic homotopy theory allows us to produce new invariants which generalise classical topological invariants, such as the Euler characteristic of a variety. These motivic invariants not only recover the classical topological ones, but also provide arithmetic information. In this talk, I'll review the construction of a motivic Euler characteristic, then study its arithmetic properties, and mention some applications. I'll then talk about work in progress with Ran Azouri, Stephen McKean and Anubhav Nanavaty which studies a "higher Euler characteristic", allowing us to produce an invariant of automorphisms valued in an arithmetically interesting group. I'll then talk about how to relate part of this invariant to a more classical invariant of quadratic forms.

Thu, 13 Nov 2025

12:00 - 13:00
L3

 Tsunamis;  and how to protect against them

Prof. Herbert Huppert FRS
(University of Cambridge)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

 

Professor Herbert Eric Huppert FRS
University of Cambridge | University of New South Wales

Herbert Huppert (b. 1943, Sydney) is a British geophysicist renowned for his pioneering work applying fluid mechanics to the Earth sciences, with contributions spanning meteorology, oceanography, and geology. He has been Professor of Theoretical Geophysics and the Founding Director of the Institute of Theoretical Geophysics at the University of Cambridge since 1989, and a Fellow of King’s College, Cambridge, since 1970. He has held a part-time Professorship at the University of New South Wales since 1990.

Elected a Fellow of the Royal Society in 1987, Huppert has served on its Council and chaired influential working groups on bioterrorism and carbon capture and storage. His distinctions include the Arthur L. Day Prize and Lectureship from the US National Academy of Sciences (2005), the Bakerian Lecture (2011), and a Royal Medal (2020). He is also a Fellow of the American Geophysical Union, the American Physical Society, and the Academia Europaea.

Thu, 13 Nov 2025

12:00 - 12:30
Lecture Room 4

TBA

Michael Hardman
(University of Oxford Department of Physics)
Abstract

TBA

Thu, 13 Nov 2025

14:00 - 15:00
Lecture Room 3

Fast Algorithms for Optimal Viscosities in Damped Mechanical Systems

Francoise Tisseur
(University of Manchester)
Abstract

Optimal damping consists of identifying a viscosity vector that maximizes the decay rate of a mechanical system's response. This can be rephrased as minimizing the trace of the solution of a Lyapunov equation whose coefficient matrix, representing the system dynamics, depends on the dampers' viscosities. The latter must be nonnegative for a physically meaningful solution, and the system must be asymptotically stable at the solution.

In this talk, we present conditions under which the system is never stable or may not be stable for certain values of the viscosity vector, and, in the latter case, discuss how to modify the constraints so as to guarantee stability. We show that the KKT conditions of our nonlinear optimization problem are equivalent to a viscosity-dependent nonlinear residual function that is equal to zero at an optimal viscosity vector. To minimize this residual function, we propose a Barzilai-Borwein residual minimization algorithm (BBRMA) and a spectral projection gradient algorithm (SPG). The efficiency of both algorithms relies on a fast computation of the gradient for BBRMA, and both the objective function and its gradient for SPG. By fully exploiting the low-rank structure of the problem, we show how to compute these in $O(n^2)$ operations, $n$ being the size of the mechanical system.

 

This is joint work with Qingna Li (Beijing Institute of Technology).

 

 

Thu, 13 Nov 2025
16:00
Lecture Room 4

TBA

Thomas Bloom
(Manchester)
Abstract

TBA

Thu, 13 Nov 2025

16:00 - 17:00
L5

Learning to Optimally Stop Diffusion Processes, with Financial Applications

Prof. Xunyu Zhou
(Columbia University (New York))
Abstract
We study optimal stopping for diffusion processes with unknown model primitives within the continuous-time reinforcement learning (RL) framework developed by Wang et al. (2020), and present applications to option pricing and portfolio choice. By penalizing the corresponding variational inequality formulation, we transform the stopping problem into a stochastic optimal control problem with two actions. We then randomize controls into Bernoulli distributions and add an entropy regularizer to encourage exploration. We derive a semi-analytical optimal Bernoulli distribution, based on which we devise RL algorithms using the martingale approach established in Jia and Zhou (2022a). We establish a policy improvement theorem and prove the fast convergence of the resulting policy iterations. We demonstrate the effectiveness of the algorithms in pricing finite-horizon American put options, solving Merton’s problem with transaction costs, and scaling to high-dimensional optimal stopping problems. In particular, we show that both the offline and online algorithms achieve high accuracy in learning the value functions and characterizing the associated free boundaries.
 
Joint work with Min Dai, Yu Sun and Zuo Quan Xu, and forthcoming in Management Science 


 

Fri, 14 Nov 2025

11:00 - 12:00
L4

Self-generated chemotaxis of heterogeneous cell populations

Dr Mehmet Can Uçar
(School of Mathematical and Physical Sciences University of Sheffield)
Abstract

Cell and tissue movement during development, immune response, and cancer invasion depends on chemical or mechanical guidance cues. In many systems, this guidance arises not from long-range, pre-patterned cues but from self-generated gradients locally shaped by cells. However, how heterogeneous cell mixtures coordinate their migration by self-generated gradients remains largely unexplored. In this talk, I will first summarize our recent discovery that immune cells steer their long-range migration using self-generated chemotactic cues (Alanko et al., 2023). I will then introduce a multi-component Keller-Segel model that describes migration and patterning strategies of heterogeneous cell populations (Ucar et al., 2025). Our model predicts that the relative chemotactic sensitivities of different cell populations determine the shape and speed of traveling density waves, while boundary conditions such as external cell and attractant reservoirs substantially influence the migration dynamics. We quantitatively corroborate these predictions with in vitro experiments on co-migrating immune cell mixtures. Interestingly, immune cell co-migration occurs near the optimal parameter regime predicted by theory for coupled and colocalized migration. Finally, I will discuss the role of mechanical interactions, revealing a non-trivial interplay between chemotactic and mechanical non-reciprocity in driving collective migration.
 

Fri, 14 Nov 2025

11:00 - 12:00
L1

How to make the most of your tutorials

Abstract

This session will look at how you can get the most out of your lectures and tutorials. We’ll talk about how to prepare effectively, make lectures more productive, and understand what tutors expect from you during tutorials. You’ll leave with practical tips to help you study more confidently and make your learning time count.


This session is likely to be most relevant for first-year undergraduates, but all are welcome.

Fri, 14 Nov 2025
12:00
N4.01

Mathematrix: Maths Isn't Neutral with Hana Ayoob

Hana Ayoob
(Mathematrix)
Abstract

Mathematicians often like to think of maths as objective. Science communicator Hana Ayoob joins us to discuss how the fact that humans do maths means that the ways maths is developed, used, and communicated are not neutral.

Fri, 14 Nov 2025

12:00 - 13:15
L3

TBA

Ilya Losev
(Mathematical Insitute, Oxford)
Mon, 17 Nov 2025

14:00 - 15:00
Lecture Room 3

Self-Supervised Machine Imaging

Prof Mike Davies
(University of Edinburgh)
Abstract

Modern deep learning methods provide the state-of-the-art in image reconstruction in most areas of computational imaging. However, such techniques are very data hungry and in a number of key imaging problems access to ground truth data is challenging if not impossible. This has led to the emergence of a range of self-supervised learning algorithms for imaging that attempt to learn to image without ground truth data. 

In this talk I will review some of the existing techniques and look at what is and might be possible in self-supervised imaging.

Mon, 17 Nov 2025
14:15
L4

The co-radical filtration on the Chow group of zero-cycles on hyper-Kähler varieties

Charles Vial
(Bielefeld University)
Abstract

I will discuss an ascending filtration on the Chow group of zero-cycles on a smooth projective variety obtained roughly by considering the successive kernels of the iterates of some modified diagonal embedding of the variety. This filtration is particularly relevant in the case of abelian varieties and of hyper-Kähler varieties, where it is expected to be opposite to the conjectural Bloch-Beilinson filtration. In the case of abelian varieties, it can in fact be described explicitly in terms of the Beauville decomposition, while in the case of hyper-Kähler varieties, I conjecture (and prove in some cases) that it coincides with a filtration introduced earlier by Claire Voisin. As a by-product we obtain in joint work with Olivier Martin a criterion involving second Chern classes for two effective zero-cycles on a moduli space of stable objects on a K3 surface to be rationally equivalent, generalising a result of Marian-Zhao.

Mon, 17 Nov 2025
15:30
L5

On the congruence subgroup property for mapping class groups

Henry Wilton
(Cambridge University)
Abstract

I will relate two notorious open questions in low-dimensional topology.  The first asks whether every hyperbolic group is residually finite. The second, the congruence subgroup property, relates the finite-index subgroups of mapping class groups to the topology of the underlying surface. I will explain why, if every hyperbolic group is residually finite, then mapping class groups enjoy the congruence subgroup property. Time permitting, I may give some further applications to the question of whether hyperbolic 3-manifolds are determined by the finite quotients of their fundamental groups.

Mon, 17 Nov 2025

15:30 - 16:30
L3

Stochastic Graphon Games with Interventions

Eyal NEUMANN
(Imperial College London)
Abstract

We consider targeted intervention problems in dynamic network and graphon games. First, we study a general dynamic network game in which players interact over a graph and seek to maximize their heterogeneous, concave goal functionals. We establish the existence and uniqueness of a Nash equilibrium in both the finite-player network game and the corresponding infinite-player graphon game, and prove its convergence as the number of players tends to infinity. We then introduce a central planner who implements a dynamic targeted intervention. Given a fixed budget, the central planner maximizes the average welfare at equilibrium by perturbing the players' heterogeneous goal functionals. Using a novel fixed-point argument, we prove the existence and uniqueness of an optimal intervention in the graphon setting, and show that it achieves near-optimal performance in large finite networks. Finally, we study the special case of linear-quadratic goal functionals and derive semi-explicit solutions for the optimal intervention.

 

This is a joint work with Sturmius Tuschmann.  


 

Mon, 17 Nov 2025

16:30 - 17:30
L4

Existence and nonexistence for equations of fluctuating hydrodynamics

Prof Johannes Zimmer
( TU-Munich)
Abstract

Equations of fluctuating hydrodynamics, also called Dean-Kawasaki type equations, are stochastic PDEs describing the evolution of finitely many interacting particles which obey a Langevin equation. First, we give a mathematical derivation for such equations. The focus is on systems of interacting particles described by second order Langevin equations. For such systems,  the equations of fluctuating hydrodynamics are a stochastic variant of Vlasov-Fokker-Planck equations, where the noise is white in space and time, conservative and multiplicative. We show a dichotomy previously known for purely diffusive systems holds here as well: Solutions exist only for suitable atomic initial data, but provably not for any other initial data. The class of systems covered includes several models of active matter. We will also discuss regularisations, where existence results hold under weaker assumptions.