Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Wed, 28 Sep 2022 09:00 -
Tue, 30 Jun 2026 17:00
Mathematical Institute

Cascading Principles - a major mathematically inspired art exhibition by Conrad Shawcross - extended until June 2026

Further Information

Oxford Mathematics is delighted to be hosting one of the largest exhibitions by the artist Conrad Shawcross in the UK. The exhibition, Cascading Principles: Expansions within Geometry, Philosophy, and Interference, brings together over 40 of Conrad's mathematically inspired works from the past seventeen years. Rather than in a gallery, they are placed in the working environment of the practitioners of the subject that inspired them, namely mathematics.

Conrad Shawcross models scientific thought and reasoning within his practice. Drawn to mathematics, physics, and philosophy from the early stages of his artistic career, Shawcross combines these disciplines in his work. He places a strong emphasis on the nature of matter, and on the relativity of gravity, entropy, and the nature of time itself. Like a scientist working in a laboratory, he conceives each work as an experiment. Modularity is key to his process and many works are built from a single essential unit or building block. If an atom or electron is a basic unit for physicists, his unit is the tetrahedron.

Unlike other shapes, a tetrahedron cannot tessellate with itself. It cannot cover or form a surface through its repetition - one tetrahedron is unable to fit together with others of its kind. Whilst other shapes can sit alongside one another without creating gaps or overlapping, tetrahedrons cannot resolve in this way. Shawcross’ Schisms are a perfect demonstration of this failure to tessellate. They bring twenty tetrahedrons together to form a sphere, which results in a deep crack and ruptures that permeate its surface. This failure of its geometry means that it cannot succeed as a scientific model, but it is this very failure that allows it to succeed as an art work, the cracks full of broad and potent implications.

The show includes all Conrad's manifold geometric and philosophical investigations into this curious, four-surfaced, triangular prism to date. These include the Paradigms, the Lattice Cubes, the Fractures, the Schisms, and The Dappled Light of the Sun. The latter was first shown in the courtyard of the Royal Academy and subsequently travelled all across the world, from east to west, China to America.

The show also contains the four Beacons. Activated like a stained-glass window by the light of the sun, they are composed of two coloured, perforated disks moving in counter rotation to one another, patterning the light through the non-repeating pattern of holes, and conveying a message using semaphoric language. These works are studies for the Ramsgate Beacons commission in Kent, as part of Pioneering Places East Kent.

The exhibition Cascading Principles: Expansions within Geometry, Philosophy, and Interference is curated by Fatoş Üstek, and is organised in collaboration with Oxford Mathematics. 

The exhibition is open 9am-5pm, Monday to Friday. Some of the works are in the private part of the building and we shall be arranging regular tours of that area. If you wish to join a tour please email @email.

The exhibition runs until 30 June 2026. You can see and find out more here.

Watch the four public talks centred around the exhibition (featuring Conrad himself).

The exhibition is generously supported by our longstanding partner XTX Markets.

Images clockwise from top left of Schism, Fracture, Paradigm and Axiom

Schism Fracture

Axiom Paradigm

Fri, 28 Feb 2025 09:00 -
Wed, 31 Dec 2025 00:00
Mezzanine

Kathleen Hyndman - Nature+Maths=Art

Further Information

The Mathematical Institute is delighted to be hosting a major exhibition of artist Kathleen Hyndman's mathematically inspired work.

The exhibition of drawings and paintings illustrate Hyndman’s desire to see nature and the world around her in mathematical sequences and geometrical patterns. Golden Section proportions and angles, prime numbers as well as Fibonacci numbers and eccentric constructions are all used to create works achieving a calm and balanced unity.

Born in Essex, Hyndman trained at Kingston-upon-Thames School of Art and exhibited widely in the UK and abroad, including MOMA Oxford and the Hayward Annual in London. As well as a full time artist, she was also a teacher and mother of two. She lived and had her studio in Kingston Bagpuize in Oxfordshire and had exhibitions at Zuleika Gallery in Woodstock until her death in 2022.

Open Monday to Friday 9am to 5pm.

The exhibition is curated by Zuleika Gallery and Professor Martin Kemp FBA, and will run until the end of the year.

Exhibition brochure

Bottom from left:  Hot Breeze, 1994; Heat, 1976; Exit (a seventeen sided work), 1993; Straight Line Rotation, White on Black. Forest, 1986

Below: film of the exhibition by Evan Nedyalkov

Mon, 17 Nov 2025

14:00 - 15:00
Lecture Room 3

Self-Supervised Machine Imaging

Prof Mike Davies
(University of Edinburgh)
Abstract

Modern deep learning methods provide the state-of-the-art in image reconstruction in most areas of computational imaging. However, such techniques are very data hungry and in a number of key imaging problems access to ground truth data is challenging if not impossible. This has led to the emergence of a range of self-supervised learning algorithms for imaging that attempt to learn to image without ground truth data. 

In this talk I will review some of the existing techniques and look at what is and might be possible in self-supervised imaging.

Mon, 17 Nov 2025
14:15
L4

The co-radical filtration on the Chow group of zero-cycles on hyper-Kähler varieties

Charles Vial
(Bielefeld University)
Abstract

I will discuss an ascending filtration on the Chow group of zero-cycles on a smooth projective variety obtained roughly by considering the successive kernels of the iterates of some modified diagonal embedding of the variety. This filtration is particularly relevant in the case of abelian varieties and of hyper-Kähler varieties, where it is expected to be opposite to the conjectural Bloch-Beilinson filtration. In the case of abelian varieties, it can in fact be described explicitly in terms of the Beauville decomposition, while in the case of hyper-Kähler varieties, I conjecture (and prove in some cases) that it coincides with a filtration introduced earlier by Claire Voisin. As a by-product we obtain in joint work with Olivier Martin a criterion involving second Chern classes for two effective zero-cycles on a moduli space of stable objects on a K3 surface to be rationally equivalent, generalising a result of Marian-Zhao.

Mon, 17 Nov 2025
15:30
L5

On the congruence subgroup property for mapping class groups

Henry Wilton
(Cambridge University)
Abstract

I will relate two notorious open questions in low-dimensional topology.  The first asks whether every hyperbolic group is residually finite. The second, the congruence subgroup property, relates the finite-index subgroups of mapping class groups to the topology of the underlying surface. I will explain why, if every hyperbolic group is residually finite, then mapping class groups enjoy the congruence subgroup property. Time permitting, I may give some further applications to the question of whether hyperbolic 3-manifolds are determined by the finite quotients of their fundamental groups.

Mon, 17 Nov 2025

15:30 - 16:30
L3

Stochastic Graphon Games with Interventions

Eyal NEUMANN
(Imperial College London)
Abstract

We consider targeted intervention problems in dynamic network and graphon games. First, we study a general dynamic network game in which players interact over a graph and seek to maximize their heterogeneous, concave goal functionals. We establish the existence and uniqueness of a Nash equilibrium in both the finite-player network game and the corresponding infinite-player graphon game, and prove its convergence as the number of players tends to infinity. We then introduce a central planner who implements a dynamic targeted intervention. Given a fixed budget, the central planner maximizes the average welfare at equilibrium by perturbing the players' heterogeneous goal functionals. Using a novel fixed-point argument, we prove the existence and uniqueness of an optimal intervention in the graphon setting, and show that it achieves near-optimal performance in large finite networks. Finally, we study the special case of linear-quadratic goal functionals and derive semi-explicit solutions for the optimal intervention.

 

This is a joint work with Sturmius Tuschmann.  


 

Mon, 17 Nov 2025

16:30 - 17:30
L4

Existence and nonexistence for equations of fluctuating hydrodynamics

Prof Johannes Zimmer
( TU-Munich)
Abstract

Equations of fluctuating hydrodynamics, also called Dean-Kawasaki type equations, are stochastic PDEs describing the evolution of finitely many interacting particles which obey a Langevin equation. First, we give a mathematical derivation for such equations. The focus is on systems of interacting particles described by second order Langevin equations. For such systems,  the equations of fluctuating hydrodynamics are a stochastic variant of Vlasov-Fokker-Planck equations, where the noise is white in space and time, conservative and multiplicative. We show a dichotomy previously known for purely diffusive systems holds here as well: Solutions exist only for suitable atomic initial data, but provably not for any other initial data. The class of systems covered includes several models of active matter. We will also discuss regularisations, where existence results hold under weaker assumptions. 

Tue, 18 Nov 2025
12:30
C2

Adhesion-driven patterning in collective cell behaviour

Carles Falco
(WCMB)
Abstract

Cellular adhesion is a fundamental mechanism underlying diverse collective cell behaviours, from tissue self-organisation in developmental biology to the formation of directional queues that guide cell migration. Modelling such interactions has also proven mathematically rich, motivating the use of continuum partial differential equation models that capture adhesion through nonlocal interaction kernels. These models can, for instance, reproduce classical cell-sorting patterns arising from differential adhesion in mixtures of cell populations. In this talk, we briefly review such models and explain how a local approximation of nonlocal aggregation–diffusion equations can be derived in the limit of short-range interactions. We then discuss recent advances in the field and highlight new results on pattern formation driven by adhesive interactions in migrating and proliferating cell populations, as well as in systems of nonreciprocally interacting cells.

Tue, 18 Nov 2025
13:00
L2

An N=4 SYM Collider at Finite Rank and Finite Coupling

Robin Karlsson
(Oxford )
Abstract

Energy correlations characterise the energy flux through detectors at infinity produced in a collision event. In CFTs, these detectors are examples of light-ray operators and, in particular, the stress tensor operator integrated over future null infinity. In N=4 SU(N_c) SYM, we combine perturbation theory, holography, integrability, supersymmetric localisation, and modern conformal bootstrap techniques to obtain predictions for such a collider experiment at finite coupling, both at finite number of colours, and in the planar limit. In QCD, the coupling runs with the angle between detectors, and there is a transition from perturbative to non-perturbative QCD. In N=4 SYM, a similar transition occurs when the coupling is varied, which we explore quantitatively. I will describe the physics underlying this observable and some of the methods used, particularly in regimes with analytical control.


 

Tue, 18 Nov 2025
14:00
L6

Character sheaves and their restriction to mixed conjugacy classes

Marie Roth
(UEA)
Abstract

Introduced by Lusztig in the eighties, character sheaves are the geometrical counterpart of irreducible representations of finite groups of Lie type. Defined over algebraic groups, they allow us to use geometrical tools to deduce information on the finite groups. In this talk, Marie Roth will give a definition of character sheaves before explaining how to compute their restriction to conjugacy classes (to some extent). This work was part of her PhD thesis under the supervision of Olivier Dudas and Gunter Malle.

Tue, 18 Nov 2025

14:00 - 15:00
Online

Planar percolation and the loop $O(n)$ model

Matan Harel
(Northeastern University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Consider a tail trivial, positively associated site percolation process such that the set of open vertices is stochastically dominated by the set of closed ones. We show that, for any planar graph $G$, such a process must contain zero or infinitely many infinite connected components. The assumptions cover Bernoulli site percolation at parameter $p$ less than or equal to one half, resolving a conjecture of Benjamini and Schramm. As a corollary, we prove that $p_c$ is greater than or equal to $1/2$ for any unimodular, invariantly amenable planar graphs.

We will then apply this percolation statement to the loop $O(n)$ model on the hexagonal lattice, and show that, whenever $n$ is between $1$ and $2$ and $x$ is between $1/\sqrt{2}$ and $1$, the model exhibits infinitely many loops surrounding every face of the lattice, giving strong evidence for conformally invariant behavior in the scaling limit (as conjectured by Nienhuis).

This is joint work with Alexander Glazman (University of Innsbruck) and Nathan Zelesko (Northeastern University).

Tue, 18 Nov 2025
15:30
L4

Logarithms, roots, and negative tangencies

Navid Nabijou
(Queen Mary's London)
Abstract

Logarithmic and orbifold structures provide two independent ways to model curves in a variety with tangency along a normal crossings divisor. The associated systems of Gromov-Witten invariants benefit from complementary techniques; this has motivated extensive interest in comparing the two approaches.

I will report on work in which we establish a complete comparison which, crucially, incorporates negative tangency orders. Negative tangency orders appear naturally in the boundary splitting formalisms of both theories. As such, our comparison opens the way for the wholesale importation of techniques from one side to the other. Work of Sam Johnston uses our comparison to give a new proof of the associativity of the Gross-Siebert intrinsic mirror ring.

Along the way, I will discuss the pathological geometry of negative tangency mapping spaces, and how this can be understood and controlled via tropical geometry. A crucial contribution of our work is the discovery of a "refined virtual class" on the logarithmic moduli space, which gives rise to a distinguished sector of the Gromov-Witten theory.

This is joint work with Luca Battistella and Dhruv Ranganathan.

Tue, 18 Nov 2025

15:30 - 16:30
Online

Separation of roots of random polynomials

Marcus Michelen
(Northwestern University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

What do the roots of random polynomials look like? Classical works of Erdős-Turán and others show that most roots are near the unit circle and they are approximately rotationally equidistributed. We will begin with an understanding of why this happens and see how ideas from extremal combinatorics can mix with analytic and probabilistic arguments to show this. Another main feature of random polynomials is that their roots tend to "repel" each other. We will see various quantitative statements that make this rigorous. In particular, we will study the smallest separation $m_n$ between pairs of roots and show that typically $m_n$ is on the order of $n^{-5/4}$. We will see why this reflects repulsion between roots and discuss where this repulsion comes from. This is based on joint work with Oren Yakir.

Tue, 18 Nov 2025
16:00
C3

TBC

Forrest Glebe
(University of Hawaii )
Abstract

to follow

Tue, 18 Nov 2025
16:00
L6

Matrix-product state skeletons in Onsager-integrable quantum chains

Imogen Camp
(Department of Physics)
Abstract

Matrix-product state (MPS) skeletons are connected networks of local one-dimensional quantum lattice models with ground states admitting an MPS representation with finite bond dimension. In this talk, I will discuss how such skeletons underlie certain families of models obeying the Onsager algebra, and how these simple ground states provide a route to explicitly computing correlation functions.

Wed, 19 Nov 2025
14:30
N3.12

Mathematrix Book Club

(Mathematrix)
Abstract

A discussion on how race and ethnicity interact with the concept of merit in academia, based on sections from the book 'Misconceiving Merit' by Blair-Loy and Cech. 

Thu, 20 Nov 2025
11:00
C6

Character rigidity and ergodic actions of non-uniform higher rank lattices

Alon Dogon
(Weizmann Institute)
Abstract

The theory of characters for infinite groups, initiated by Thoma, is a natural generalization of the representation theory of finite groups. More precisely, a character on a discrete group is a normalised positive definite function which is conjugation invariant and extremal. Connes conjectured a rigidity result for characters of an important family of discrete groups, namely, irreducible lattices in higher-rank semisimple Lie groups. The conjecture states that every character is either the trace of a finite-dimensional representation, or vanishes off the center. This rigidity property implies the Stuck-Zimmer conjecture for such lattices, namely, ergodic actions are either essentially transitive or essentially free. I will present a recent joint result with Michael Glasner, Yuval Gorfine, Liam Hanany and Arie Levit in which we prove that non-uniform irreducible lattices in higher-rank semisimple groups are character rigid. As a result, we also obtain a resolution of the Stuck-Zimmer conjecture for all non-uniform lattices.

Thu, 20 Nov 2025

12:00 - 13:00
L3

Integrating lab experiments into fluid dynamics models

Ashleigh Hutchinson
(University of Manchester)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Ashleigh Hutchinson is an applied mathematician with a strong research focus on fluid mechanics problems rooted in nature and industry. Her work centres on low-Reynolds number flows and non-Newtonian fluids, where she adopts a multidisciplinary approach that combines theoretical models, laboratory experiments, and numerical simulations.

Her other research interests include applying mathematical modelling to solve problems in industries such as finance, sugar, fishing, mining, and energy conservation.

Abstract

In this talk, we will explore three flow configurations that illustrate the behaviour of slow-moving viscous fluids in confined geometries: viscous gravity currents, fracturing of shear-thinning fluids in a Hele-Shaw cell, and rectangular channel flows of non-Newtonian fluids. We will first develop simple mathematical models to describe each setup, and then we will compare the theoretical predictions from these models with laboratory experiments. As is often the case, we will see that even models that are grounded in solid physical principles often fail to accurately predict the real-world flow behaviour. Our aim is to identify the primary physical mechanisms absent from the model using laboratory experiments. We will then refine the mathematical models and see whether better agreement between theory and experiment can be achieved.

 

 

Thu, 20 Nov 2025

12:00 - 12:30
Lecture Room 4

TBA

Ganghui Zhang
(Mathematical Institute (University of Oxford))
Abstract

TBA

Thu, 20 Nov 2025

12:00 - 13:00
C5

Existence and weak-strong uniqueness of measure solutions to Euler-alignment/Aw-Rascle-Zhang model of collective behaviour

Ewelina Zatorska
(University of Warwick)
Abstract
I will discuss the multi-dimensional Euler–alignment system with a matrix-valued communication kernel, which is motivated by models of anticipation dynamics in collective behaviour. A key feature of this system is its formal equivalence to a nonlocal variant of the Aw–Rascle–Zhang (ARZ) traffic model, in which the desired velocity is modified by a nonlocal gradient interaction. The global-in-time existence of measure solutions to both formulations,  can be obtained via a single degenerate pressureless Navier–Stokes approximation. I will also discuss a weak–strong uniqueness principle adapted to the pressureless setting and to nonlocal alignment forces. As a consequence of these results we can rigorously justify the formal correspondence between the nonlocal ARZ and Euler–alignment models: they arise from the same inviscid limit, and the weak–strong uniqueness property ensures that, whenever a classical solution exists, both formulations coincide with it.


 

Thu, 20 Nov 2025

14:00 - 15:00
Lecture Room 3

Optimisation on Probability Distributions - Are We There Yet?

Chris Oates
(Newcastle University)
Abstract

Several interesting and emerging problems in statistics, machine learning and optimal transport can be cast as minimisation of (entropy-regularised) objective functions defined on an appropriate space of probability distributions.  Numerical methods have historically focused on linear objective functions, a setting in which one has access to an unnormalised density for the distributional target.  For nonlinear objectives, numerical methods are relatively under-developed; for example, mean-field Langevin dynamics is considered state-of-the-art.  In the nonlinear setting even basic questions, such as how to tell whether or not a sequence of numerical approximations has practically converged, remain unanswered.  Our main contribution is to present the first computable measure of sub-optimality for optimisation in this context.  

Joint work with Clémentine Chazal, Heishiro Kanagawa, Zheyang Shen and Anna Korba.

 

Thu, 20 Nov 2025
14:30
L4

Euler systems for non-ordinary Galois representations

David Loeffler
(UniDistance Suisse)
Abstract

The machinery of Euler systems (originating in the work of Kolyvagin and Thaine in the late 1980s) is an extremely powerful tool for studying the cohomology of Galois representations, and hence for attacking big conjectures such as Birch–Swinnerton-Dyer. However, current approaches to this theory require the Galois representation to satisfy some sort of "ordinarity" condition, which is a serious restriction in applications. I will discuss recent joint work with Sarah Zerbes in which we extend the Euler system machine to cover situations where this ordinary condition doesn't hold, using a surprising new ingredient (adapted from earlier work of Naomi Sweeting): non-principal ultrafilters, which serve to keep track of the sequences of auxiliary primes arising in Kolyvagin's argument. Applications of this theory, including new cases of the Iwasawa main conjecture, will be discussed in Sarah's talk later the same afternoon.

Thu, 20 Nov 2025

15:00 - 16:00
L2

Global and local regression: a signature approach with applications

Prof. Christian Bayer
(Weierstrass Institute Berlin)
Abstract

The path signature is a powerful tool for solving regression problems on path space, i.e., for computing conditional expectations $\mathbb{E}[Y | X]$ when the random variable $X$ is a stochastic process -- or a time-series. We provide new theoretical convergence guarantees for two different, complementary approaches to regression using signature methods. In the context of global regression, we show that linear functionals of the robust signature are universal in the $L^p$ sense in a wide class of examples. In addition, we present a local regression method based on signature semi-metrics, and show universality as well as rates of convergence. 

 

Based on joint works with Davit Gogolashvili, Luca Pelizzari, and John Schoenmakers.

 

 

Please note: The MCF seminar usually takes place on Thursdays from 16:00 to 17:00 in L5. However, for this week, the timing will be changed to 15:00 to 16:00.

Thu, 20 Nov 2025
16:00
Lecture Room 4

Euler systems: what they are and where to find them

Sarah Zerbes
(ETH Zurich)
Further Information

NOTE: Earlier in the day, there will be an additional related talk in the Arithmetic Geometry Seminar given by David Loeffler (https://www.maths.ox.ac.uk/node/73993).

Abstract

I will briefly introduce the Bloch-Kato conjecture, a very general conjecture relating special values of L-functions to arithmetic, and explain how it generalises many more familiar theorems and conjectures such as the BSD conjecture for elliptic curves. I will then introduce the concept of an "Euler system", which is a powerful tool in proving cases of these conjectures, and survey some recent constructions of Euler systems using the geometry of Shimura varieties.

Thu, 20 Nov 2025
16:00
C3

TBC

Marius Dadarlat
(Purdue)
Abstract

to follow

Thu, 20 Nov 2025
17:00
L3

Pseudofinite fields with additive and multiplicative character

Stefan Ludwig
(Universitat Freiburg)
Abstract

What is the common theory of all finite fields equipped with an additive and/or multiplicative character? Hrushovski answered this question in the additive case working in (a mild version of) continuous logic. Motivated by natural number-theoretic examples we generalise his results to the case allowing for both (non-trivial) additive character and (sufficiently generic) multiplicative character. Apart from answering the above question we obtain a quantifier elimination result and a generalisation of the definability of the Chatzidakis-Macintyre-van den Dries counting measure to this context. The proof relies on classical results on bounds of character sums following from the work of Weil.

Fri, 21 Nov 2025

11:00 - 12:00
L4

Bridging scales in biology: using mathematics to understand patterning and morphogenesis from molecular to tissue levels

Professor Alex Fletcher
(School of Mathematical and Physical Sciences University of Sheffield)
Abstract

The development of a complex functional multicellular organism from a single cell involves tightly regulated and coordinated cell behaviours coupled through short- and long-range biochemical and mechanical signals. To truly comprehend this complexity, alongside experimental approaches we need mathematical and computational models, which can link observations to mechanisms in a quantitative, predictive, and experimentally verifiable way. In this talk I will describe our efforts to model aspects of embryonic development, focusing in particular on the planar polarised behaviours of cells in epithelial tissues, and discuss the mathematical and computational challenges associated with this work. I will also highlight some of our work to improve the reproducibility and re-use of such models through the ongoing development of Chaste (https://github.com/chaste), an open-source C++ library for multiscale modelling of biological tissues and cell populations.

Fri, 21 Nov 2025

14:00 - 15:00
L1

What’s it like doing a PhD in maths/being an academic?

Abstract

This week's Fridays@2 will be a panel discussion focusing on what it is like to pursue a research degree. The panel will share their thoughts and experiences in a question-and-answer session, discussing some of the practicalities of being a postgraduate student, and where a research degree might lead afterwards.

Mon, 24 Nov 2025
14:15
L4

Towards a Taub-Bolt to Taub-NUT via Ricci flow with surgery

John Hughes
(Oxford University)
Abstract

A conjecture of Holzegel, Schmelzer and Warnick states that there is a Ricci flow with surgery connecting the two Ricci flat metrics Taub-Bolt and Taub-NUT. We will present some recent progress towards proving this conjecture. This includes showing for the first time the existence of a Ricci flow with surgery with local topology change $\mathbb{CP}^2\setminus\{ \mathrm{pt}\} \rightarrow \mathbb{R}^4$.

Mon, 24 Nov 2025
15:30
L5

Bass notes of closed arithmetic hyperbolic surfaces

Bram Petri
(IMJ-PRG/Sorbonne Université)
Abstract

The spectral gap (or bass note) of a closed hyperbolic surface is the smallest non-zero eigenvalue of its Laplacian. This invariant plays an important role in many parts of hyperbolic geometry. In this talk, I will speak about joint work with Will Hide on the question of which numbers can appear as spectral gaps of closed arithmetic hyperbolic surfaces.


 

Mon, 24 Nov 2025

15:30 - 16:30
L3

Local convergence and metastability for mean-field particles in a multi-well potential

Pierre Monmarché
(Université Gustave Eiffel)
Abstract

We consider particles following a diffusion process in a multi-well potential and attracted by their barycenter (corresponding to the particle approximation of the Wasserstein flow of a suitable free energy). It is well-known that this process exhibits phase transitions: at high temperature, the mean-field limit has a single stationary solution, the N-particle system converges to equilibrium at a rate independent from N and propagation of chaos is uniform in time. At low temperature, there are several stationary solutions for the non-linear PDE, and the limit of the particle system as N and t go to infinity do not commute. We show that, in the presence of multiple stationary solutions, it is still possible to establish local convergence rates for initial conditions starting in some Wasserstein balls (this is a joint work with Julien Reygner). In terms of metastability for the particle system, we also show that for these initial conditions, the exit time of the empirical distribution from some neighborhood of a stationary solution is exponentially large with N and approximately follows an exponential distribution, and that propagation of chaos holds uniformly over times up to this expected exit time (hence, up to times which are exponentially large with N). Exactly at the critical temperature below which multiple equilibria appear, the situation is somewhat degenerate and we can get uniform in N convergence estimates, but polynomial instead of exponential.

Mon, 24 Nov 2025

16:30 - 17:30
L4

On models for morphoelastic growth

Prof. Georg Dolzman
(The University of Regensburg)
Abstract

Mathematical models for elastic materials undergoing growth will be considered. The characteristic feature is a multiplicative decomposition of the deformation gradient into an elastic part a growth-related part. Approaches towards the existence of solutions will be discussed in
various settings, including models with and without codimension. This is joint work with Kira Bangert and Julian Blawid.

Tue, 25 Nov 2025
14:00
L6

Categories of smooth representations of p-adic SL_3 in natural characteristic

Adam Jones
(Cambridge )
Abstract

Adam Jones will explore the relationship between the category of smooth representations of a semisimple p-adic Lie group G and the module category over its associated pro-p Iwahori-Hecke algebra via the canonical invariance adjunction. This relationship is well understood in characteristic 0, in fact it yields a category equivalence equivalence, but in characteristic p it is very mysterious and largely defies understanding. We will explore methods of constructing an appropriate subcategory of Hecke modules which is well behaved under the adjunction, and which can be shown to contain all parabolic inductions. He will give examples of this yielding results when G has rank 1, and more recently when G = SL_3 in certain cases.

Tue, 25 Nov 2025

14:00 - 15:00
L4

Poset Saturation - From the Diamond to the General Case

Maria-Romina Ivan
(University of Cambridge, Stanford University)
Abstract

Given a finite poset $P$ we ask how small a family of subsets of $[n]$ can be such that it does not contain an induced copy of the poset, but adding any other subset creates such a copy. This number is called the saturation number of $P$, denoted by $\operatorname{sat}^*(n,P)$. Despite the apparent similarity to the saturation for graphs, this notion is vastly different. For example, it has been shown that the saturation numbers exhibit a dichotomy: for any poset, the saturation number is either bounded, or at least $2 n^{1/2}$. In fact, it is believed that the saturation number is always bounded or exactly linear. In this talk we will be discussing the most recent advances in this field, with the focus on the diamond poset, whose saturation number was unknown until recently.

Joint with Sean Jaffe.

Tue, 25 Nov 2025
16:00
L6

Random matrices & operator algebras

Jennifer Pi
((Mathematical Institute University of Oxford))
Abstract

I'll discuss some of the history of the use of random matrices for studying the structure of operator algebras, starting with Voiculescu's notion free independence. We'll see that the original notions of convergence of random matrix models to certain infinite-dimensional operators is actually fairly weak, and discuss the more recent "strong convergence" phenomenon and its applications to C*-algebras. Finally, I'll touch upon some ongoing work, joint with A. Shiner and S. White, for continuing to use random matrix tools to prove structural properties of C*-algebras.

Tue, 25 Nov 2025

16:30 - 17:30
L3

An Adjoint Method for Optimization of the Boltzmann Equation

Prof. Russel Caflisch
Abstract

We present an adjoint method for optimization of the spatially inhomogeneous Boltzmann equation for rarefied gas dynamics. The adjoint method is derived using a "discretize then optimize" approach. Discretization (in time and velocity) is via the Direct Simulation Monte Carlo (DSMC) method, and adjoint equations are derived from an augmented Lagrangian.  The boundary conditions that are included in this analysis include spectral reflection, thermal reflection, and inflow boundary conditions. For thermal reflection, a "score function" is included as a statistical regularization. This is joint work with Yunan Yang (Cornell). This special seminar is jointly held with the Keble Complexity Research Cluster.

Thu, 27 Nov 2025

12:00 - 12:30
Lecture Room 4

TBA

Sadok Jerad
(Mathematical Institute (University of Oxford))
Abstract

TBA

Thu, 27 Nov 2025

12:00 - 13:00
L3

Maximum likelihood asymptotics via tropical geometry.

Karel Devriendt
((Mathematical Institute University of Oxford))
Further Information

Karel's research revolves around graphs and their applications. Over the last few years, he has focused on the concept of effective resistance and how it captures the geometry of graphs. His current interests are in discrete curvature and discrete geometry and related questions on matroids, tropical geometry and algebraic statistics. 

He has worked on applications such as power grid robustness, network epidemics and polarization in social networks. 

Karel is a Hooke Fellow here in the Mathematical Institute. 

Abstract

Maximum likelihood estimation is a ubiquitous task in statistics and its applications. The task is: given some observations of a random variable, find the distribution(s) in your statistical model which best explains these observations. A modern perspective on this classical problem is to study the "likelihood geometry" of a statistical model. By focusing on models which have a polynomial parametrization, i.e., lie on an algebraic variety, this perspective brings in tools, algorithms and invariants from algebraic geometry and combinatorics.

In this talk, I will explain some of the key ideas in likelihood geometry and discuss its recent application to the study of likelihood asymptotics, i.e., understanding likelihood estimation for very large or very small observation counts. Agostini et al. showed that these asymptotics can be modeled and understood using tools from tropical geometry, and they used this to completely describe the asymptotics for linear models. In our work, we use the same approach to treat the class of log-linear models (also known as Gibbs distributions or maximum entropy models) and give a complete and combinatorial description of the likelihood asymptotics under some conditions.

This talk is based on joint work with Emma Boniface (UC Berkeley) and Serkan Hoşten (San Francisco SU), available at: https://epubs.siam.org/doi/full/10.1137/24M1656839

 

Thu, 27 Nov 2025

14:00 - 15:00
Lecture Room 3

The Role of Inexactness in Krylov Subspace Regularization for Inverse Problems

Malena Sabate Landman
((Mathematical Institute University of Oxford))
Abstract

Linear discrete inverse problems arise in many areas of science and engineering, from medical imaging and geophysics to atmospheric modelling. Their numerical solution often relies on iterative algorithms, particularly Krylov subspace methods, that can efficiently handle large-scale, ill-posed systems. In many practical settings, however, exact computations of matrix–vector products, preconditioners, or right-hand sides are either infeasible or unnecessary, leading to inexact iterations. This talk explores the interplay between inexactness and the regularizing behaviour of Krylov subspace methods for inverse problems. We discuss how approximate computations influence the regularization effect inherent in early iterations, as well as  semiconvergence, and how controlled inexactness may be exploited to improve computational efficiency. The aim is to provide a broad perspective on recent insights and open questions at the interface of inverse problems, iterative solvers, and computational inexactness.