Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Tue, 07 May 2024
11:00
L5

Transportation-cost inequalities for nonlinear Gaussian functionals

Ioannis Gasteratos
(Imperial College, London)
Abstract

In this talk, we study concentration properties for laws of non-linear Gaussian functionals on metric spaces. Our focus lies on measures with non-Gaussian tail behaviour which are beyond the reach of Talagrand’s classical Transportation-Cost Inequalities (TCIs). Motivated by solutions of Rough Differential Equations and relying on a suitable contraction principle, we prove generalised TCIs for functionals that arise in the theory of regularity structures and, in particular, in the cases of rough volatility and the two-dimensional Parabolic Anderson Model. Our work also extends existing results on TCIs for diffusions driven by Gaussian processes.

Tue, 07 May 2024

14:00 - 14:30
L3

The Approximation of Singular Functions by Series of Non-integer Powers

Mohan Zhao
(University of Toronto)
Abstract
In this talk, we describe an algorithm for approximating functions of the form $f(x) = \langle \sigma(\mu),x^\mu \rangle$ over the interval $[0,1]$, where $\sigma(\mu)$ is some distribution supported on $[a,b]$, with $0<a<b<\infty$. Given a desired accuracy and the values of $a$ and $b$, our method determines a priori a collection of non-integer powers, so that functions of this form are approximated by expansions in these powers, and a set of collocation points, such that the expansion coefficients can be found by collocating a given function at these points. Our method has a small uniform approximation error which is proportional to the desired accuracy multiplied by some small constants, and the number of singular powers and collocation points grows logarithmically with the desired accuracy. This method has applications to the solution of partial differential equations on domains with corners.
Tue, 07 May 2024

14:00 - 15:00
L5

Using hyperbolic Coxeter groups to construct highly regular expander graphs

Francois Thilmany
(UC Louvain)
Abstract

A graph $X$ is defined inductively to be $(a_0, . . . , a_{n−1})$-regular if $X$ is $a_0$-regular and for every vertex $v$ of $X$, the sphere of radius 1 around $v$ is an $(a_1, . . . , a_{n−1})$-regular graph. A family $F$ of graphs is said to be an expander family if there is a uniform lower bound on the Cheeger constant of all the graphs in $F$. 

After briefly (re)introducing Coxeter groups and their geometries, we will describe how they can be used to construct very regular polytopes, which in turn can yield highly regular graphs. We will then use the super-approximation machinery, whenever the Coxeter group is hyperbolic, to obtain the expansion of these families of graphs. As a result, we obtain interesting infinite families of highly regular expander graphs, some of which are related to the exceptional groups. 

The talk is based on work joint with Conder, Lubotzky, and Schillewaert. 

Tue, 07 May 2024
14:00
L6

TBA

Yan Fyodorov
(King's College London)
Abstract

TBA

Tue, 07 May 2024

14:00 - 15:00
Online

TBA

Irit Dinur
(Weizmann Institute of Science)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Tue, 07 May 2024

14:30 - 15:00
L3

TBA

Tianyi Pu
(Imperial College London)
Abstract

TBA

Tue, 07 May 2024
15:00
L6

Oka manifolds and their role in complex analysis and geometry

Franc Forstneric
Abstract

Oka theory is about the validity of the h-principle in complex analysis and geometry. In this expository lecture, I will trace its main developments, from the classical results of Kiyoshi Oka (1939) and Hans Grauert (1958), through the seminal work of Mikhail Gromov (1989), to the introduction of Oka manifolds (2009) and the present state of knowledge. The lecture does not assume any prior exposure to this theory.

Tue, 07 May 2024

15:30 - 16:30
Online

TBA

Guillaume Chapuy
(Institut de Recherche en Informatique Fondamentale)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Tue, 07 May 2024

16:00 - 17:00
C2

TBC

Dolapo Oyetunbi
(University of Ottawa)
Abstract

to follow

Thu, 09 May 2024

12:00 - 13:00
L1

Models of viscous anisotropy

Daniel Richards
(University of Tasmania)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

What do fiber polymers and ice sheets have in common? They both flow with a directionally dependent - anisotropic - viscosity. This behaviour occurs in other geophysical flows, such as the Earth's mantle, where a material's microstructure affects its large-scale flow. In ice, the alignment of crystal orientations can cause the viscosity to vary by an order of magnitude, consequently having a strong impact on the flow of ice sheets and glaciers. However, the effect of anisotropy on large-scale flow is not well understood, due to a lack of understanding of a) the best physical approximations to model crystal orientations, and b) how crystal orientations affect rheology. In this work, we aim to address both these questions by linking rheology to crystal orientation predictions, and testing a range of models against observations from the Greenland ice sheet. The results show assuming all grains experience approximately the same stress provides realistic predictions, and we suggest a set of equations and parameters which can be used in large-scale models of ice sheets. 

Thu, 09 May 2024

14:00 - 15:00
Lecture Room 4

Fast optimistic methods for monotone equations and convex optimization problems

Radu Bot
(University of Vienna)
Further Information

 

Please note; the seminar is taking place in Lecture Room 4 on this occasion 

Abstract

In this talk, we discuss continuous in time dynamics for the problem of approaching the set of zeros of a single-valued monotone and continuous operator V . Such problems are motivated by minimax convexconcave and, in particular, by convex optimization problems with linear constraints. The central role is played by a second-order dynamical system that combines a vanishing damping term with the time derivative of V along the trajectory, which can be seen as an analogous of the Hessian-driven damping in case the operator is originating from a potential. We show that these methods exhibit fast convergence rates for kV (z(t))k as t ! +1, where z( ) denotes the generated trajectory, and for the restricted gap function, and that z( ) converges to a zero of the operator V . For the corresponding implicit and explicit discrete time models with Nesterov’s momentum, we prove that they share the asymptotic features of the continuous dynamics.

Extensions to variational inequalities and fixed-point problems are also addressed. The theoretical results are illustrated by numerical experiments on bilinear games and the training of generative adversarial networks.

Thu, 09 May 2024
16:00
L4

Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework with Exogenous Signals

Owen Futter
(Mathematical Institute)
Further Information

Please join us for reshments outside the lecture room from 1530.

Abstract

In this seminar we introduce a portfolio optimisation framework, in which the use of rough path signatures (Lyons, 1998) provides a novel method of incorporating path-dependencies in the joint signal-asset dynamics, naturally extending traditional factor models, while keeping the resulting formulas lightweight, tractable and easily interpretable. Specifically, we achieve this by representing a trading strategy as a linear functional applied to the signature of a path (which we refer to as “Signature Trading” or “Sig-Trading”). This allows the modeller to efficiently encode the evolution of past time-series observations into the optimisation problem. In particular, we derive a concise formulation of the dynamic mean-variance criterion alongside an explicit solution in our setting, which naturally incorporates a drawdown control in the optimal strategy over a finite time horizon. Secondly, we draw parallels between classical portfolio stategies and Sig-Trading strategies and explain how the latter leads to a pathwise extension of the classical setting via the “Signature Efficient Frontier”. Finally, we give explicit examples when trading under an exogenous signal as well as examples for momentum and pair-trading strategies, demonstrated both on synthetic and market data. Our framework combines the best of both worlds between classical theory (whose appeal lies in clear and concise formulae) and between modern, flexible data-driven methods (usually represented by ML approaches) that can handle more realistic datasets. The advantage of the added flexibility of the latter is that one can bypass common issues such as the accumulation of heteroskedastic and asymmetric residuals during the optimisation phase. Overall, Sig-Trading combines the flexibility of data-driven methods without compromising on the clarity of the classical theory and our presented results provide a compelling toolbox that yields superior results for a large class of trading strategies.

This is based on works with Blanka Horvath and Magnus Wiese.

Fri, 10 May 2024

12:00 - 13:00
Quillen Room

TBD

Tuan Pham
(University of Edinburgh)
Abstract

TBD

Fri, 10 May 2024

14:00 - 15:00
L3

The determining role of cell adhesions for force transmission, mechanical activity and stiffness sensing in cells and tissues

Dr Carina Dunlop
(Dept of Mathematics University of Surrey)
Abstract

The role of tissue stiffness in controlling cell behaviours ranging from proliferation to signalling and activation is by now well accepted. A key focus of experimental studies into mechanotransduction are focal adhesions, localised patches of strong adhesion, where cell signalling has been established to occur. However, these adhesion sites themselves alter the mechanical equilibrium of the system determining the force balance and work done. To explore this I have developed an active matter continuum description of cellular contractility and will discuss recent results on the specific role of spatial positioning of adhesions in mechanotransduction. I show using energy arguments why the experimentally observed arrangements of focal adhesions develop and the implications this has for stiffness sensing and cellular contractility control. I will also show how adhesions play distinct roles in single cells and tissue layers respectively drawing on recent experimental work with Dr JR Davis (Manchester University) and Dr Nic Tapon (Crick Institute) with applications to epithelial layers and organoids.

Fri, 10 May 2024
16:00
L1

Talks on Talks

Abstract

What makes a good talk? This year, graduate students and postdocs will give a series talks on how to give talks! There may even be a small prize for the audience’s favourite.

If you’d like to have a go at informing, entertaining, or just have an axe to grind about a particularly bad talk you had to sit through, we’d love to hear from you (you can email Ric Wade or ask any of the organizers).
 

Mon, 13 May 2024

14:00 - 15:00
Lecture Room 3

Compression of Graphical Data

Mihai Badiu
(Department of Engineering Science University of Oxford)
Abstract

Data that have an intrinsic network structure can be found in various contexts, including social networks, biological systems (e.g., protein-protein interactions, neuronal networks), information networks (computer networks, wireless sensor networks),  economic networks, etc. As the amount of graphical data that is generated is increasingly large, compressing such data for storage, transmission, or efficient processing has become a topic of interest. In this talk, I will give an information theoretic perspective on graph compression. 

The focus will be on compression limits and their scaling with the size of the graph. For lossless compression, the Shannon entropy gives the fundamental lower limit on the expected length of any compressed representation. I will discuss the entropy of some common random graph models, with a particular emphasis on our results on the random geometric graph model. 

Then, I will talk about the problem of compressing a graph with side information, i.e., when an additional correlated graph is available at the decoder. Turning to lossy compression, where one accepts a certain amount of distortion between the original and reconstructed graphs, I will present theoretical limits to lossy compression that we obtained for the Erdős–Rényi and stochastic block models by using rate-distortion theory.

Mon, 13 May 2024
14:15
L4

TBA

Simon Pepin Lehalleur
(KdV Institute, Amsterdam)
Mon, 13 May 2024
15:30
Lecture Room 3

Martingale model risk

Prof Nizar Touzi
(NYU)
Abstract

We consider the general framework of distributionally robust optimization under a martingale restriction. We provide explicit expressions for model risk sensitivities in this context by considering deviations in the Wasserstein distance and the corresponding adapted one. We also extend the dual formulation to this context.

Mon, 13 May 2024
16:00
L2

TBC

Zachary Feng
(University of Oxford)
Abstract

TBC

Tue, 14 May 2024 10:00 -
Tue, 28 May 2024 12:00
C5

Current topics in Lorentzian geometric analysis: Non-regular spacetimes

Dr Clemens Sämann
(Mathematical Insittute)
Further Information

Sessions led by Dr Clemens Sämann will take place on:

Tuesday, 14 May 10am-12pm C5 (Lecture)
Thursday, 16 May 10am-12pm C5 (Lecture)
Tuesday, 28 May 10am-12pm C5 (Reading group)

Participants should have a good knowledge of differential geometry and metric spaces (basics of Lorentzian geometry will be reviewed). Some knowledge of measure theory, functional analysis (in particular Sobolev spaces) and optimal transport is recommended but we will try to be as self-contained as possible.

Abstract

Course Overview
The course gives an introduction to a topic of current interest in Lorentzian geometic analysis and mathematical General Relativity: an approach to nonregular spacetimes based on a “metric” point of view.
 

Learning Outcomes
Becoming acquainted with Lorentzian length spaces, sectional and Ricci curvature bounds for non-regular Lorentzian spaces and the appropriate techniques.
 

Course Synopsis
Lecture 1a: Review of Lorentzian geometry, spaces of constant curvature, causality theory, singularity theorems.
Lecture 1b: Introduction to Lorentzian length spaces, timelike sectional curvature bounds.


Lecture 2a: Optimal transport, timelike Ricci curvature bounds
Lecture 2b: Sobolev calculus for time functions. Literature: [O’N83, KS18, CM20].
 

Reading group: Depending on student’s interest one could discuss the papers [GKS19, AGKS21, ABS22].

 

References
[ABS22] L. Aké Hau, S. Burgos, and D. A. Solis. Causal completions as Lorentzian pre-length spaces. General Relativity and Gravitation, 54(9), 2022. doi:10.1007/s10714-022-02980-x.
[AGKS21] S. B. Alexander, M. Graf, M. Kunzinger, and C. Sämann. Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems. Comm. Anal. Geom., to appear, 2021. doi:10.48550/arXiv.1909.09575. arXiv:1909.09575 [math.MG].
[CM20] F. Cavalletti and A. Mondino. Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. Cambridge Journal of Mathematics, to appear, arXiv:2004.08934 [math.MG], 2020. doi:10.48550/arXiv.2004.08934.
[GKS19] J. D. E. Grant, M. Kunzinger, and C. Sämann. Inextendibility of spacetimes and Lorentzian length spaces. Ann. Global Anal. Geom., 55(1):133–147, 2019. doi:10.1007/s10455-018-9637-x.
[KS18] M. Kunzinger and C. Sämann. Lorentzian length spaces. Ann. Glob. Anal. Geom., 54(3):399–447, 2018. doi:10.1007/s10455-018-9633-1.
[O’N83] B. O’Neill. Semi-Riemannian geometry with applications to relativity, volume 103 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.

 

Should you be interested in taking part in the course, please send an email to @email  by 10 May 2024. 

Tue, 14 May 2024
11:00
L5

A graph discretized approximation of diffusions with drift and killing on a complete Riemannian manifold

Hiroshi Kawabi
(Keio University)
Abstract

In this talk, we present a graph discretized approximation scheme for diffusions with drift and killing on a complete Riemannian manifold M. More precisely, for a given Schrödinger operator with drift on M having the form A = Δ b + V , we introduce a family of discrete time random walks in the  ow generated by the drift b with killing on a sequence of proximity graphs, which are constructed by partitions cutting M into small pieces. As a main result, we prove that the drifted Schrodinger semigroup {e—tA}t≥0 is approximated by discrete semigroups generated by the family of random walks with a suitable scale change. This result gives a  nite dimensional summation approximation of a Feynman-Kac type functional integral over M. Furthermore, when M is compact, we also obtain a quantitative error estimate of the convergence.
This talk is based on a joint work with Satoshi Ishiwata (Yamagata University), and the full paper can be found on https://doi.org/10.1007/s00208-024-02809-9.

Tue, 14 May 2024

14:00 - 15:00
L4

The Erdös–Rényi random graph conditioned on being a cluster graph

Marc Noy
(Universitat Politecnica de Catalunya)
Abstract

A cluster graph is a disjoint union of complete graphs. We consider the random $G(n,p)$ graph on $n$ vertices with connection probability $p$, conditioned on the rare event of being a cluster graph. There are three main motivations for our study.

  1. For $p = 1/2$, each random cluster graph occurs with the same probability, resulting in the uniform distribution over set partitions. Interpreting such a partition as a graph adds additional structural information.
  2. To study how the law of a well-studied object like $G(n,p)$ changes when conditioned on a rare event; an evidence of this fact is that the conditioned random graph overcomes a phase transition at $p=1/2$ (not present in the dense $G(n,p)$ model).
  3. The original motivation was an application to community detection. Taking a random cluster graph as a model for a prior distribution of a partition into communities leads to significantly better community-detection performance.

This is joint work with Martijn Gösgens, Lukas Lüchtrath, Elena Magnanini and Élie de Panafieu.

Tue, 14 May 2024

16:00 - 17:00
C2

TBC

Ilan Hirschberg
(Ben-Gurion University of the Negev)
Abstract

to follow

Thu, 16 May 2024

12:00 - 13:00
L3

Modelling liquid infiltration in a porous medium: perils of oversimplification

​Doireann O'Kiely
(University of Limerick)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

Mathematical modelling can support decontamination processes in a variety of ways.  In this talk, we focus on the contamination step: understanding how much of a chemical spill has seeped into the Earth or a building material, and how far it has travelled, are essential for making good decisions about how to clean it up.  

We consider an infiltration problem in which a chemical is poured on an initially unsaturated porous medium, and seeps into it via capillary action. Capillarity-driven flow through partially-saturated porous media is often modelled using Richards’ equation, which is a simplification of the Buckingham-Darcy equation in the limit where the infiltrating phase is much more viscous than the receding phase.  In this talk, I will explore the limitations of Richards equation, and discuss some scenarios in which predictions for small-but-finite viscosity ratios are very different to the Richards simplification.

Thu, 16 May 2024

14:00 - 15:00
Lecture Room 3

Multilevel Monte Carlo methods for the approximation of failure probability regions

Matteo Croci
(Basque Center for Applied Mathematics)
Abstract

In this talk, we consider the problem of approximating failure regions. More specifically, given a costly computational model with random parameters and a failure condition, our objective is to determine the parameter region in which the failure condition is likely to not be satisfied. In mathematical terms, this problem can be cast as approximating the level set of a probability density function. We solve this problem by dividing it into two: 1) The design of an efficient Monte Carlo strategy for probability estimation. 2) The construction of an efficient algorithm for level-set approximation. Following this structure, this talk is comprised of two parts:

In the first part, we present a new multi-output multilevel best linear unbiased estimator (MLBLUE) for approximating expectations. The advantage of this estimator is in its convenience and optimality: Given any set of computational models with known covariance structure, MLBLUE automatically constructs a provenly optimal estimator for any (finite) number of quantities of interest. Nevertheless, the optimality of MLBLUE is tied to its optimal set-up, which requires the solution of a nonlinear optimization problem. We show how the latter can be reformulated as a semi-definite program and thus be solved reliably and efficiently.

In the second part, we construct an adaptive level-set approximation algorithm for smooth functions corrupted by noise in $\mathbb{R}^d$. This algorithm only requires point value data and is thus compatible with Monte Carlo estimators. The algorithm is comprised of a criterion for level-set adaptivity combined with an a posteriori error estimator. Under suitable assumptions, we can prove that our algorithm will correctly capture the target level set at the same cost complexity of uniformly approximating a $(d-1)$-dimensional function.

Thu, 16 May 2024
18:00
Stirling Square, London, SW1Y 5AD

Frontiers in Quantitative Finance Seminar: Turning tail risks into tail winds: using information geometry for portfolio optimisation

Julien Turc
(BNP Paribas)
Further Information

Registration for the talk is free but required.

Register here.

Abstract

A wide variety of solutions have been proposed in order to cope with the deficiencies of Modern Portfolio Theory. The ideal portfolio should optimise the investor’s expected utility. Robustness can be achieved by ensuring that the optimal portfolio does not diverge too much from a predetermined allocation. Information geometry proposes interesting and relatively simple ways to model divergence. These techniques can be applied to the risk budgeting framework in order to extend risk budgeting and to unify various classical approaches in a single, parametric framework. By switching from entropy to divergence functions, the entropy-based techniques that are useful for risk budgeting can be applied to more traditional, constrained portfolio allocation. Using these divergence functions opens new opportunities for portfolio risk managers. This presentation is based on two papers published by the BNP Paribas QIS Lab, `The properties of alpha risk parity’ (2022, Entropy) and `Turning tail risks into tailwinds’ (2020, The Journal of Portfolio Management).

Fri, 17 May 2024

12:00 - 13:00
Quillen Room

TBD

Matthew Chaffe
(University of Birmingham)
Abstract

TBD